3 research outputs found

    Influence of ecological traits on spatio-temporal dynamics of an elasmobranch community in a heavily exploited basin

    Get PDF
    Elasmobranchs, which include sharks and batoids, play critical roles in maintaining the integrity and stability of marine food webs. However, these cartilaginous fish are among the most threatened vertebrate lineages due to their widespread depletion. Consequently, understanding dynamics and predicting changes of elasmobranch communities are major research topics in conservation ecology. Here, we leverage long-term catch data from a standardized bottom trawl survey conducted from 1996 to 2019, to evaluate the spatio-temporal dynamics of the elasmobranch community in the heavily exploited Adriatic Sea, where these fish have historically been depleted. We use joint species distribution modeling to quantify the responses of the species to environmental variation while also including important traits such as species age at first maturity, reproductive mode, trophic level, and phylogenetic information. We present spatio-temporal changes in the species community and associated modification of the trait composition, highlighting strong spatial and depth-mediated patterning. We observed an overall increase in the abundance of the dominant elasmobranch species, except for spurdog, which has shown a continued decline. However, our results showed that the present community displays lower age at first maturity and a smaller fraction of viviparous species compared to the earlier observed community due to changes in species' relative abundance. The selected traits contributed considerably to explaining community patterns, suggesting that the integration of trait-based approaches in elasmobranch community analyses can aid efforts to conserve this important lineage of fish

    3D Modeling of Plaque Progression in the Human Coronary Artery

    No full text
    The inflammation and lipid accumulation in the arterial wall represents a progressive disease known as atherosclerosis. In this study, a numerical model of atherosclerosis progression was developed. The wall shear stress (WSS) and blood analysis data have a big influence on the development of this disease. The real geometry of patients, and the blood analysis data (cholesterol, HDL, LDL, and triglycerides), used in this paper, was obtained within the H2020 SMARTool project. Fluid domain (blood) was modeled using Navier-Stokes equations in conjunction with continuity equation, while the solid domain (arterial wall) was modeled using Darcy’s law. For the purpose of modeling low-density lipoprotein (LDL) and oxygen transport, convection-diffusion equations were used. Kedem-Katchalsky equations were used for coupling fluid and solid dynamics

    Fit-for-Purpose Quality Control System in Continuous Bioanalysis during Long-Term Pediatric Studies (vol 21, 104, 2019)

    No full text
    The LENA collaborator list below was not included in the original article.s.status: publishe
    corecore