2,410 research outputs found

    Bell inequalities and density matrix for polarization entangled photons out of a two-photon cascade in a single quantum dot

    Full text link
    We theoretically investigate the joint photodetection probabilities of the biexciton-exciton cascade in single semiconductor quantum dots and analytically derive the density matrix and the Bell's inequalities of the entangled state. Our model includes different mechanisms that may spoil or even destroy entanglement such as dephasing, energy splitting of the relay excitonic states and incoherent population exchange between these relay levels. We explicitly relate the fidelity of entanglement to the dynamics of these processes and derive a threshold for violation of Bell's inequalities. Applied to standard InAs/GaAs self-assembled quantum dots, our model indicates that spontaneous emission enhancement of the excitonic states by cavity effects increases the fidelity of entanglement to a value allowing for violation of Bell's inequalities.Comment: Accepted Phys. Rev.

    Metal-coated nano-cylinder cavity for broadband nonclassical light emission

    Full text link
    A novel metal-coated nanocylinder-cavity architecture fully compatible with III-V GaInAs technology and benefiting from a broad spectral range enhancement of the localdensity- of-states is proposed as an integrated source of non-classical light. Due to a judicious selection of the mode volume, the cavity combines good collection efficiency (\gg 45%), large Purcell factors (\gg 15) over a 80-nm spectral range, and a low sensitivity to inevitable spatial mismatches between the single emitter and the cavity mode. This represents a decisive step towards the implementation of reliable solid-state devices for the generation of entangled photon pairs at infrared wavelengths

    Room temperature spontaneous emission enhancement from quantum dots in photonic crystal slab cavities in the telecommunications C-band

    Full text link
    We report on the control of the spontaneous emission dynamics from InAsP self-assembled quantum dots emitting in the telecommunications C-band and weakly coupled to the mode of a double heterostructure cavity etched on a suspended InP membrane at room temperature. The quality factor of the cavity mode is 44x10^3 with an ultra-low modal volume of the order of 1.2 lambda/n)^3, inducing an enhancement of the spontaneous emission rate of up a factor of 2.8 at 300 K

    Efficient photonic mirrors for semiconductor nanowires

    Get PDF
    International audienceUsing a fully vectorial frequency-domain aperiodic Fourier modal method, we study nanowire metallic mirrors and their photonic performance. We show that the performance of standard quarter-wave Bragg mirrors at subwavelength diameters is surprisingly poor, while engineered metallic mirrors that incorporate a thin dielectric adlayer may offer reflectance larger than 90% even for diameters as small as lambda/5

    Single InAsP/InP quantum dots as telecommunications-band photon sources

    Full text link
    The optical properties of single InAsP/InP quantum dots are investigated by spectrally-resolved and time-resolved photoluminescence measurements as a function of excitation power. In the short-wavelength region (below 1.45 μ\mum), the spectra display sharp distinct peaks resulting from the discrete electron-hole states in the dots, while in the long-wavelength range (above 1.45 μ\mum), these sharp peaks lie on a broad spectral background. In both regions, cascade emission observed by time-resolved photoluminescence confirms that the quantum dots possess discrete exciton and multi-exciton states. Single photon emission is reported for the dots emitting at 1.3 μ\mum through anti-bunching measurements

    Higher-order photon correlations in pulsed photonic crystal nanolasers

    Full text link
    We report on the higher-order photon correlations of a high-β\beta nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g(n)(0)^{(n)}(\vec{0}) with nn=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process
    corecore