5 research outputs found

    Identification of putative phosphosites and parasite kinase involved in modification of PfRh4 cytoplasmic tail.

    No full text
    <p>(A) <i>In vitro</i> kinase assays of wildtype and putative phosphosite mutations in PfRh4 cytoplasmic domains. The amino acid sequence of the PfRh4 cytoplasmic tail is shown with serines and tyrosines highlighted with the residue number. Each potential phosphosite on the PfRh4 tail was individually mutated to alanine. The all 4 lane has mutations in S1667A, S1674A, Y1680A and Y1684A and the all 5 lane has S1652A, S1667A, S1674A, Y1680A and Y1684A putative kinase sites mutated. The phosphorylation signal was quantitated and adjusted for protein loading. The loading-adjusted mutant phosphorylation signals were divided by the wildtype and plotted as a percentage of the wildtype signal (Y-axis). Autoradiograph of proteins after incubation in the <i>in vitro</i> phosphorylation assay and Coomassie gel from which protein loading was quantitated are shown in lower panels. Lane labels (X-axis) denote residues mutated to alanine. Mean percentage of wildtype phosphorylation +1 standard error of the mean are displayed. Data was averaged from four experiments performed on separate days. (B) Dosage-response curve for PfRh4 tail phosphorylation by merozoite lysate in the presence of increasing concentrations of the CK2 inhibitor TBB. PfRh4 tail phosphorylation was quantitated after incubation in <i>in vitro</i> phosphorylation assay with TBB. The phosphorylation signal for each condition was adjusted to reflect the average amount of protein loaded across each condition, determined by densitometry of the Coomassie brilliant blue stained gel. Y-axis represents loading-adjusted phosphorylation signal as a percentage of phosphorylation in the presence of DMSO (control). Autoradiograph of wildtype GST-fused PfRh4 proteins after incubation in the <i>in vitro</i> phosphorylation assay. X-axis indicates the TBB concentration with which the phosphorylation assay was incubated or DMSO. (C) <i>In vitro</i> kinase assays of PfRh and EBL cytoplasmic tails. The phosphorylation signal was quantitated and adjusted for protein loading. Autoradiograph of proteins after incubation in the <i>in vitro</i> phosphorylation assay and Coomassie brilliant blue stained gel from which protein loading was quantitated are shown. Data was averaged from four experiments performed on separate days (right panel) and standard error of the mean is shown. The following sites were mutated: EBA140 (S1159A, S1168A, T1173A), EBA175 (T1466A, mut A) and (S1489A, mut B) and in combination (mut A and B), EBA181 (S1528A, S1553A, S1557A, T1564A), PfRh2a (S3128A) and PfRh2b (S3233).</p

    Specific amino acid residues in the cytoplasmic domain are essential for PfRh4 function.

    No full text
    <p>(A) Localization of PfRh4 and PfRh2 in Rh4-WT tail, RH4-AMA1tail, Rh4-mut4tail and RH4-mut5tail lines as detected using anti-PfRh4 monoclonal and anti-PfRh2 polyclonal antibodies. Parasite nuclei were stained with DAPI. (B) Expression of PfRh4 and PfRh2 in W2mefΔ175 and all transgenic lines as detected by anti-PfRh4 and anti-PfRh2 antibody. All transgenic lines migrated as a slightly larger doublet compared to PfRh4 in W2mefΔ175, consistent with the addition of the hexa-histidine tag at the C-terminus of the protein. (C) Growth assays of transgenic lines with four and five mutations at serine and tyrosine amino acid residues in the PfRh4 cytoplasmic tail. (D) Growth assays of single mutations in the PfRh4 cytoplasmic tail. (E) Growth assays of double mutations in the PfRh4 cytoplasmic tail. In all three panels, parasitaemia was measured in neuraminidase-treated, and untreated erythrocytes after every 48 hours incubation (labelled as cycles). The parasite lines used in this experiment are displayed on the X-axis. The y-axis represents parasitaemia of neuraminidase-treated erythrocytes as a percentage of parasitaemia of the same line grown on untreated erythrocytes. Error bars represent +1 standard error of the mean. Assay performed three times on separate days, each in triplicate.</p

    Antiprotozoal Malaria Box compounds with activity in biological assays and lacking toxicity at therapeutic levels.

    No full text
    <p>Selectivity Index, SI, is toxicity level/activity level; p, probe-like; d, drug-like.</p

    Metabolomic and chemogenomic profiling.

    No full text
    <p>(A) Metabolic profiling: Heat map showing metabolic fingerprints of 80 Malaria Box compounds and atovaquone control. Parasite extracts were analyzed by LC-MS, and changes in metabolite pools were calculated for drug-treated parasites as compared to untreated controls. Hierarchical clustering was performed on <sup>2</sup>log-fold changes in metabolites (data in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s003" target="_blank">S2 Table</a>), scaled from -3 to +3. Six of seven compounds (indicated in red) reported to target <i>Pf</i>ATP4 [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.ref025" target="_blank">25</a>] showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. A large cluster of compounds (indicated in blue) clustered with the atovaquone control (indicated in orange), and exhibit an atovaquone-like signature characterized by dysregulation of pyrimidine biosynthesis, and showed a distinct metabolic response characterized by the accumulation of dNTPs and a decrease in hemoglobin-derived peptides. (B) Chemogenomic profiling: A collection of 35 <i>P</i>. <i>falciparum</i> single insertion <i>piggyBac</i> mutants were profiled with 53 MMV compounds and 3 artemisinin (ART) compounds [Artesunate (AS), Artelinic acid (AL) and Artemether (AM)] for changes in IC<sub>50</sub> relative to the wild-type parent NF54 (data in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s004" target="_blank">S3 Table</a>, genes queried in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s005" target="_blank">S4 Table</a>). Clone PB58 carried a <i>piggyBac</i> insertion in the promoter region of the K13 gene and has an increased sensitivity to ART compounds as do PB54 and PB55 [<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.ref033" target="_blank">33</a>]. Drug-drug relationships based on similarities in IC<sub>50</sub> deviations of compounds generated with <i>piggyBac</i> mutants created chemogenomic profiles used to define drug-drug relationships. The significance of similarity in MoA between Malaria Box compounds and ART was evaluated by Pearson’s correlation calculations from pairwise comparisons. The X axis shows the chemogenomic profile correlation between a Malaria Box compound and AS, the Y axis with AM; the color gradient indicates the average correlation with all ART derivatives tested. Five Malaria Box compounds (MMV006087, MMV006427, MMV020492, MMV665876, MMV396797) were identified as having similar drug-drug chemogenomic profiles to the ART sensitivity cluster.</p

    Malaria Box Heatmap.

    No full text
    <p>Shown are selected data from the HeatMap (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1005763#ppat.1005763.s002" target="_blank">S1 Table</a>) for the 400 Malaria Box compounds. Each column represents an assay (grouped by category), compounds are represented in rows. The red-green gradient represents higher to lower activity. Favorable PK activities are scored green. <i>Pf</i>: <i>Plasmodium falciparum</i>, <i>Pb</i>: <i>Plasmodium berghei</i>, PK: pharmacokinetics, sol.: solubility, hERG: human ether-a-go-go channel inhibition, DDI: drug-drug interactions (predicted).</p
    corecore