13 research outputs found

    A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster

    Get PDF
    BACKGROUND: Non-long terminal repeat (non-LTR) retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate. We have performed a systematic search for sequences matching the characteristic reverse transcriptase domain of non-LTR retrotransposons in the sequenced regions of the Drosophila melanogaster genome. RESULTS: In addition to previously characterized BS, Doc, F, G, I and Jockey elements, we have identified new non-LTR retrotransposons: Waldo, You and JuanDm. Waldo elements are related to mosquito RTI elements. You to the Drosophila I factor, and JuanDm to mosquito Juan-A and Juan-C. Interestingly, all JuanDm elements are highly homogeneous in sequence, suggesting that they are recent components of the Drosophila genome. CONCLUSIONS: The genome of D. melanogaster contains at least ten families of non-site-specific non-LTR retrotransposons representing three distinct clades. Many of these families contain potentially active members. Fine evolutionary analyses must await the more accurate sequences that are expected in the next future

    Transposition des elements I chez Drosophila melanogaster : etude moleculaire de mutations induites par la dysgenesie hybride et analyse des fonctions d'un element I modifie in vitro

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Identification of Waldo-A and Waldo-B, two closely related non-LTR retrotransposons in Drosophila

    No full text
    We have identified two novel, closely related subfamilies of non-long-terminal-repeat (non-LTR) retrotransposons in Drosophila melanogaster, the Waldo-A and Waldo-B subfamilies, that are in the same lineage as site-specific LTR retrotransposons of the R1 clade. Both contain potentially active copies with two large open reading frames, having coding capacities for a nucleoprotein as well as endonuclease and reverse transcriptase activities. Many copies are truncated at the 5′ end, and most are surrounded by target site duplications of variable lengths. Elements of both subfamilies have a nonrandom distribution in the genome, often being inserted within or very close to (CA)n arrays. At the DNA level, the longest elements of Waldo-A and Waldo-B are 69% identical on their entire length, except for the 5′ untranslated regions, which have a mosaic organization, suggesting that one arose from the other following new promoter acquisition. This event occurred before the speciation of the D. melanogaster subgroup of species, since both Waldo-A and Waldo-B coexist in other species of this subgroup

    Functional lability of RNA-dependent RNA polymerases in animals.

    No full text
    RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways
    corecore