1,518 research outputs found

    Constraining pulsar gap models with the light-curve and flux properties of the gamma-ray pulsar population

    Full text link
    We compare population synthesis results for inner and outer magnetosphere emission models with the various characteristics measured in the first LAT pulsar catalogue for both the radio-loud and radio-weak or radio-quiet gamma-ray pulsars. We show that all models fail to reproduce the observations: for each model there is a lack of luminous and energetic objects that suggest a non dipolar magnetic field structure or spin-down evolution. The large dispersion that we find in the simulated gamma-ray luminosity versus spin-down power relation does not allow to use the present trend seen in the Fermi data to distinguish among models. For each model and each Fermi detected pulsar, we have generated light curves as a function of obliquity and inclination angles. The theoretical curves were fitted to the observed one, using a maximum-likelihood approach, to derive the best-fit orientations and to compare how well each model can reproduce the data. Including the radio light-curve gives an additional key constraint to restrict the orientation spaceComment: 4 pages, 3 figures, to appear in the proceedings of the Pulsar 2010 Conference, Italy, 10 - 15 October 201

    Population Synthesis of Radio and Gamma-ray Pulsars in the Fermi Era

    Full text link
    We present results of our pulsar population synthesis of normal pulsars from the Galactic disk using our previously developed computer code. On the same footing, we use slot gap and outer gap models for gamma-ray emission from normal pulsars to obtain statistics of radio-loud and radio-quiet gamma-ray pulsars. From recently improved understanding of HII and star forming regions in the Galaxy, we develop a new surface density model of the birth location of neutron stars. We explore models of neutron star evolution with magnetic field-decay, and with different initial period and magnetic field distributions. We present preliminary results including simulated population statistics that are compared with recent detections by Fermi of normal, isolated pulsars.Comment: 4 pages, 3 figures, to appear in the proceedings of the Pulsar 2010 Conference, Italy, 10 - 15 October 201

    Pulsar twinkling and relativity

    Get PDF
    The number of pulsars with detected emission at X-ray and gamma-ray energies has been steadily growing, showing that beams of high-energy particles are commonly accelerated in pulsar magnetospheres, even though the location and number of acceleration sites remain unsettled. Acceleration near the magnetic poles, close to the polar cap surface or to higher altitudes in the slot gap along the last open field lines, involves an electric field component due to inertial-frame dragging. Acceleration can also take place in the outer magnetosphere where charge depletion due to global currents causes a large electric field along the magnetic field lines. All models require a detailed knowledge of the open magnetosphere geometry and its relativistic distortions. Observational trends with age, spin-down power and magnetic field as well as population synthesis studies in the Galactic disc and the nearby Gould Belt provide useful, however not yet conclusive, constraints on the competing models.Comment: 9 pages, 5 figures, to be published in proceedings of the Albert Einstein Century International Conference, Paris 200

    Radio to Gamma-Ray Emission from Shell-type Supernova Remnants: Predictions from Non-linear Shock Acceleration Models

    Get PDF
    Supernova remnants (SNRs) are widely believed to be the principal source of galactic cosmic rays. Such energetic particles can produce gamma-rays and lower energy photons via interactions with the ambient plasma. In this paper, we present results from a Monte Carlo simulation of non-linear shock structure and acceleration coupled with photon emission in shell-like SNRs. These non-linearities are a by-product of the dynamical influence of the accelerated cosmic rays on the shocked plasma and result in distributions of cosmic rays which deviate from pure power-laws. Such deviations are crucial to acceleration efficiency and spectral considerations, producing GeV/TeV intensity ratios that are quite different from test particle predictions. The Sedov scaling solution for SNR expansions is used to estimate important shock parameters for input into the Monte Carlo simulation. We calculate ion and electron distributions that spawn neutral pion decay, bremsstrahlung, inverse Compton, and synchrotron emission, yielding complete photon spectra from radio frequencies to gamma-ray energies. The cessation of acceleration caused by the spatial and temporal limitations of the expanding SNR shell in moderately dense interstellar regions can yield spectral cutoffs in the TeV energy range; these are consistent with Whipple's TeV upper limits on unidentified EGRET sources. Supernova remnants in lower density environments generate higher energy cosmic rays that produce predominantly inverse Compton emission at super-TeV energies; such sources will generally be gamma-ray dim at GeV energies.Comment: 62 pages, AASTeX format, including 1 table and 11 figures, accepted for publication in The Astrophysical Journal (Vol 513, March 1, 1999
    corecore