11 research outputs found

    Downregulation of Serotonergic System Components in an Experimentally Induced Cryptorchidism in Rabbits

    No full text
    Cryptorchidism (CO) or undescended testes is defined as the failure of one or both testes to be positioned inside the scrotum. Typically, cryptorchidism is detected at birth or shortly thereafter, and in humans, it is considered to be part of the testicular dysgenesis syndrome (TDS), a complex pathology regarding the male reproductive system that apparently involves the interaction of both genetic and environmental harmful factors, mainly during embryonic development. Serotonin (5-HT) is an ancient molecule that participates in a broad range of body functions, and in recent years, its importance in reproduction has started to be elucidated. In male pathologies such as infertility, varicocele, erectile dysfunction, and primary carcinoid tumors, an increase in 5-HT concentration or its metabolites in the blood, semen, and urine has been directly related; nevertheless, the role of 5-HT in CO remains unknown. In the present work, our goal was to answer two important questions: (1) whether some serotonergic system components are present in adult male Oryctolagus cuniculus (chinchilla rabbit) and (2) if there are changes in their expression in an experimental model of CO. Using histological, molecular, and biochemical approaches, we found the presence of some serotonergic system components in the adult chinchilla rabbit, and we demonstrated that its expression is downregulated after CO was pharmacologically induced. Although we did not test the role of 5-HT in the etiology of CO, our results suggest that this indoleamine could be important for the regulation of steroidogenesis and spermatogenesis processes in the chinchilla rabbit during adulthood. Finally, in parallel experimental series, we found downregulation of kynurenine concentration in COI rabbits when compared to control ones, suggesting that CO could be affecting the kynurenine pathway and probably testicular immune privilege which in turn could lead to infertility/sterility conditions in this disorder

    Chemical Characterization of Plant Extracts and Evaluation of their Nematicidal and Phytotoxic Potential

    No full text
    Nacobbus aberrans ranks among the “top ten” plant-parasitic nematodes of phytosanitary importance. It causes significant losses in commercial interest crops in America and is a potential risk in the European Union. The nematicidal and phytotoxic activities of seven plant extracts against N. aberrans and Solanum lycopersicum were evaluated in vitro, respectively. The chemical nature of three nematicidal extracts (EC50,48h ≀ 113 ”g mL−1) was studied through NMR analysis. Plant extracts showed nematicidal activity on second-stage juveniles (J2): (≄87%) at 1000 ”g mL−1 after 72 h, and their EC50 values were 71.4–468.1 and 31.5–299.8 ”g mL−1 after 24 and 48 h, respectively. Extracts with the best nematicidal potential (EC50,48h < 113 ”g mL−1) were those from Adenophyllum aurantium, Alloispermum integrifolium, and Tournefortia densiflora, which inhibited L. esculentum seed growth by 100% at 20 ”g mL−1. Stigmasterol (1), ÎČ-sitosterol (2), and α-terthienyl (3) were identified from A. aurantium, while 1, 2, lutein (4), centaurin (5), patuletin-7-ÎČ-O-glucoside (6), pendulin (7), and penduletin (8) were identified from A. integrifolium. From T. densiflora extract, allantoin (9), 9-O-angeloyl-retronecine (10), and its N-oxide (11) were identified. The present research is the first to report the effect of T. densiflora, A. integrifolium, and A. aurantium against N. aberrans and chemically characterized nematicidal extracts that may provide alternative sources of botanical nematicides

    Prolactin-induced neuroprotection against glutamate excitotoxicity is mediated by the reduction of [Ca<sup>2+</sup>]i overload and NF-ÎșB activation

    No full text
    <div><p>Prolactin (PRL) is a peptidic hormone that displays pleiotropic functions in the organism including different actions in the brain. PRL exerts a neuroprotective effect against excitotoxicity produced by glutamate (Glu) or kainic acid in both <i>in vitro</i> and <i>in vivo</i> models. It is well known that Glu excitotoxicity causes cell death through apoptotic or necrotic pathways due to intracellular calcium ([Ca<sup>2+</sup>] i) overload. Therefore, the aim of the present study was to assess the molecular mechanisms by which PRL maintains cellular viability of primary cultures of rat hippocampal neurons exposed to Glu excitotoxicity. We determined cell viability by monitoring mitochondrial activity and using fluorescent markers for viable and dead cells. The intracellular calcium level was determined by a fluorometric assay and proteins involved in the apoptotic pathway were determined by immunoblot. Our results demonstrated that PRL afforded neuroprotection against Glu excitotoxicity, as evidenced by a decrease in propidium iodide staining and by the decrease of the LDH activity. In addition, the MTT assay shows that PRL maintains normal mitochondrial activity even in neurons exposed to Glu. Furthermore, the Glu-induced intracellular [Ca<sup>2+</sup>]i overload was attenuated by PRL. These data correlate with the reduction found in the level of active caspase-3 and the pro-apoptotic ratio (Bax/Bcl-2). Concomitantly, PRL elicited the nuclear translocation of the transcriptional factor NF-ÎșB, which was detected by immunofluorescence and confocal microscopy. To our knowledge, this is the first report demonstrating that PRL prevents Glu excitotoxicity by a mechanism involving the restoration of the intracellular calcium homeostasis and mitochondrial activity, as well as an anti-apoptotic action possibly mediated by the activity of NF-ÎșB. Overall, the current results suggest that PRL could be of potential therapeutic advantage in the treatment of neurodegenerative diseases.</p></div
    corecore