76 research outputs found

    Variability in subthalamic nucleus targeting for deep brain stimulation with 3 and 7 Tesla magnetic resonance imaging

    Get PDF
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.5 or 3 Tesla (T) is used for targeting. Ultra-high-field MRI (7 T and above) can obtain superior anatomical information and might therefore be better suited for targeting. This study aims to test whether optimized 7 T imaging protocols result in less variable targeting of the STN for DBS compared to clinically utilized 3 T images. Three DBS-experienced neurosurgeons determined the optimal STN DBS target site on three repetitions of 3 T-T2, 7 T-T2*, 7 T-R2* and 7 T-QSM images for five PD patients. The distance in millimetres between the three repetitive coordinates was used as an index of targeting variability and was compared between field strength, MRI contrast and repetition with a Bayesian ANOVA. Further, the target coordinates were registered to MNI space, and anatomical coordinates were compared between field strength, MRI contrast and repetition using a Bayesian ANOVA. The results indicate that the neurosurgeons are stable in selecting the DBS target site across MRI field strength, MRI contrast and repetitions. The analysis of the coordinates in MNI space however revealed that the actual selected location of the electrode is seemingly more ventral when using the 3 T scan compared to the 7 T scans

    Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    Get PDF
    Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri

    Psychology and aggression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68264/2/10.1177_002200275900300301.pd

    Genetic architecture of spatial electrical biomarkers for cardiac arrhythmia and relationship with cardiovascular disease

    Get PDF
    The 3-dimensional spatial and 2-dimensional frontal QRS-T angles are measures derived from the vectorcardiogram. They are independent risk predictors for arrhythmia, but the underlying biology is unknown. Using multi-ancestry genome-wide association studies we identify 61 (58 previously unreported) loci for the spatial QRS-T angle (N = 118,780) and 11 for the frontal QRS-T angle (N = 159,715). Seven out of the 61 spatial QRS-T angle loci have not been reported for other electrocardiographic measures. Enrichments are observed in pathways related to cardiac and vascular development, muscle contraction, and hypertrophy. Pairwise genome-wide association studies with classical ECG traits identify shared genetic influences with PR interval and QRS duration. Phenome-wide scanning indicate associations with atrial fibrillation, atrioventricular block and arterial embolism and genetically determined QRS-T angle measures are associated with fascicular and bundle branch block (and also atrioventricular block for the frontal QRS-T angle). We identify potential biology involved in the QRS-T angle and their genetic relationships with cardiovascular traits and diseases, may inform future research and risk prediction

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease

    A global research priority agenda to advance public health responses to fatty liver disease

    Get PDF
    Background & aims An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community. Methods Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy. Results The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement. Conclusions Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat. Impact and implications An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat

    The Effect of Pasteurization on Esch. Coli in Milk and Ice Cream Mix

    No full text

    Evaluating "Quality" methods of filling the "Teacher Gap": Results of a pilot study with early career teachers

    No full text
    Challenges for meeting the highly-qualified teacher demand, exacerbated by the critical shortage of teachers, have necessitated a variety of preparation routes for those entering the profession of teaching. This pilot study examined teacher confidence and self efficacy related to teacher preparedness within the first three years of employment. Specifically, the study examined preparation experience perceptions of early career teachers. All teachers who were employed three years or less from three Florida school districts were invited to participate. Data were analyzed and aggregated according to teacher preparation type – traditional or non-traditional (alternative) program. Participants indicated their likelihood of remaining in the program, district, and school as well as their degrees of confidence in preparation for the competencies identified. Overall results as well as differences between those who completed a traditional teacher preparation program and those with a non-traditional teacher preparation program are presented. Implications for training priorities and replicating research are discussed

    Variability in subthalamic nucleus targeting for deep brain stimulation with 3 and 7 Tesla magnetic resonance imaging

    No full text
    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective surgical treatment for Parkinson's disease (PD). Side-effects may, however, be induced when the DBS lead is placed suboptimally. Currently, lower field magnetic resonance imaging (MRI) at 1.5 or 3 Tesla (T) is used for targeting. Ultra-high-field MRI (7 T and above) can obtain superior anatomical information and might therefore be better suited for targeting. This study aims to test whether optimized 7 T imaging protocols result in less variable targeting of the STN for DBS compared to clinically utilized 3 T images. Three DBS-experienced neurosurgeons determined the optimal STN DBS target site on three repetitions of 3 T-T2, 7 T-T2*, 7 T-R2* and 7 T-QSM images for five PD patients. The distance in millimetres between the three repetitive coordinates was used as an index of targeting variability and was compared between field strength, MRI contrast and repetition with a Bayesian ANOVA. Further, the target coordinates were registered to MNI space, and anatomical coordinates were compared between field strength, MRI contrast and repetition using a Bayesian ANOVA. The results indicate that the neurosurgeons are stable in selecting the DBS target site across MRI field strength, MRI contrast and repetitions. The analysis of the coordinates in MNI space however revealed that the actual selected location of the electrode is seemingly more ventral when using the 3 T scan compared to the 7 T scans
    • …
    corecore