49 research outputs found
Ab initio calculations of the hydrogen bond
Recent x-ray Compton scattering experiments in ice have provided useful
information about the quantum nature of the interaction between HO
monomers. The hydrogen bond is characterized by a certain amount of charge
transfer which could be determined in a Compton experiment. We use ab-initio
simulations to investigate the hydrogen bond in HO structures by
calculating the Compton profile and related quantities in three different
systems, namely the water dimer, a cluster containing 12 water molecules and
the ice crystal. We show how to extract estimates of the charge transfer from
the Compton profiles.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Momentum-Resolved Inelastic X-ray Scattering as a Novel Tool to Study Charge Gap in Complex Insulators
We report particle-hole pair excitations in a cuprate insulator in the
intermediate regimes of momentum-transfers using high energy inelastic x-ray
scattering. The excitation spectra show dispersive features near the Mott edge
which shed light on the momentum structure of the upper Hubbard band in
cuprates. We briefly discuss the potential use of such a technique to study the
momentum dependence of unoccupied bands and q-dependent charge fluctuations in
complex insulators.Comment: 3 pages, 2 figures, Revise
Antiferromagnetism and Its Relation to the Superconducting Phases of UPt3
Using magnetic x-ray and neutron diffraction in UPt3, we find that a suppression of the antiferromagnetic scattering intensity in the superconducting phase is due to a reduction in the magnitude of the staggered moment with no change in symmetry. The existence of the suppression as well as the magnetic correlation lengths are not affected by the presence or absence of a visible splitting in the superconducting transition. The simplest models wherein antiferromagnetic order provides the symmetry-breaking field for the splitting do not provide a compete explanation of our results
Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators
The ground-state phase diagram of a half-filled anisotropic Kondo lattice
model is calculated within a mean-field theory. For small transverse exchange
coupling , the ground state shows an antiferromagnetic
long-range order with finite staggered magnetizations of both localized spins
and conduction electrons. When , the long-range order
is destroyed and the system is in a disordered Kondo singlet state with a
hybridization gap. Both ground states can describe the low-temperature phases
of Kondo insulating compounds. Between these two distinct phases, there may be
a coexistent regime as a result of the balance between local Kondo screening
and magnetic interactions.Comment: four pages, Revtex, one figure; to be published in Phys. Rev. B, 1
July issue, 200
Fluctuation induced hopping and spin polaron transport
We study the motion of free magnetic polarons in a paramagnetic background of
fluctuating local moments. The polaron can tunnel only to nearby regions of
local moments when these fluctuate into alignment. We propose this fluctuation
induced hopping as a new transport mechanism for the spin polaron. We calculate
the diffusion constant for fluctuation induced hopping from the rate at which
local moments fluctuate into alignment. The electrical resistivity is then
obtained via the Einstein relation. We suggest that the proposed transport
mechanism is relevant in the high temperature phase of the Mn pyrochlore
colossal magneto resistance compounds and Europium hexaboride.Comment: 8 pages, 3 figure
Prediction of huge X-ray Faraday rotation at the Gd N_4,5 threshold
X-ray absorption spectra in a wide energy range around the 4d-4f excitation
threshold of Gd were recorded by total electron yield from in-plane magnetized
Gd metal films. Matching the experimental spectra to tabulated absorption data
reveals unprecedented short light absorption lengths down to 3 nm. The
associated real parts of the refractive index for circularly polarized light
propagating parallel or antiparallel to the Gd magnetization, determined
through the Kramers-Kronig transformation, correspond to a magneto-optical
Faraday rotation of 0.7 degrees per atomic layer. This finding shall allow the
study of magnetic structure and magnetization dynamics of lanthanide elements
in nanosize systems and dilute alloys.Comment: 4 pages, 2 figures, final version resubmitted to Phys. Rev. B, Brief
Reports. Minor change
Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of
We discuss possible magnetic structures in UPt based on our analysis of
elastic neutron-scattering experiments in high magnetic fields at temperatures
. The existing experimental data can be explained by a single-{\bf q}
antiferromagnetic structure with three independent domains. For modest in-plane
spin-orbit interactions, the Zeeman coupling between the antiferromagnetic
order parameter and the magnetic field induces a rotation of the magnetic
moments, but not an adjustment of the propagation vector of the magnetic order.
A triple-{\bf q} magnetic structure is also consistent with neutron
experiments, but in general leads to a non-uniform magnetization in the
crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex
Compton scattering beyond the impulse approximation
We treat the non-relativistic Compton scattering process in which an incoming
photon scatters from an N-electron many-body state to yield an outgoing photon
and a recoil electron, without invoking the commonly used frameworks of either
the impulse approximation (IA) or the independent particle model (IPM). An
expression for the associated triple differential scattering cross section is
obtained in terms of Dyson orbitals, which give the overlap amplitudes between
the N-electron initial state and the (N-1) electron singly ionized quantum
states of the target. We show how in the high energy transfer regime, one can
recover from our general formalism the standard IA based formula for the cross
section which involves the ground state electron momentum density (EMD) of the
initial state. Our formalism will permit the analysis and interpretation of
electronic transitions in correlated electron systems via inelastic x-ray
scattering (IXS) spectroscopy beyond the constraints of the IA and the IPM.Comment: 7 pages, 1 figur
Antiferromagnetic Domains and Superconductivity in UPt3
We explore the response of an unconventional superconductor to spatially
inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting
order parameter in the E-representation models for UPt3 to couple directly to
the AFM order parameter. The Ginzburg-Landau equations for coupled
superconductivity and SIAFM are solved numerically for two possible SIAFM
configurations: (I) abutting antiferromagnetic domains of uniform size, and
(II) quenched random disorder of `nanodomains' in a uniform AFM background. We
discuss the contributions to the free energy, specific heat, and order
parameter for these models. Neither model provides a satisfactory account of
experiment, but results from the two models differ significantly. Our results
demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly
dependent on the spatial dependence of AFM order; no conclusion can be drawn
regarding the compatibility of E_{2u} superconductivity with UPt3 that is
independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.