5 research outputs found

    Genome-Wide Identification of ARF Transcription Factor Gene Family and Their Expression Analysis in Sweet Potato

    Get PDF
    Auxin response factors (ARFs) are a family of transcription factors that play an important role of auxin regulation through their binding with auxin response elements. ARF genes are represented by a large multigene family in plants; however, to our knowledge, the ARF gene family has not been well studied and characterized in sweet potatoes. In this study, a total of 25 ARF genes were identified in Ipomea trifida. The identified ItrARF genes’ conserved motifs, chromosomal locations, phylogenetic relationships, and their protein characteristics were systemically investigated using different bioinformatics tools. The expression patterns of ItfARF genes were analyzed within the storage roots and normal roots at an early stage of development. ItfARF16b and ItfARF16c were both highly expressed in the storage root, with minimal to no expression in the normal root. ItfARF6a and ItfARF10a exhibited higher expression in the normal root but not in the storage root. Subsequently, ItfARF1a, ItfARF2b, ItfARF3a, ItfARF6b, ItfARF8a, ItfARF8b, and ItfARF10b were expressed in both root types with moderate to high expression for each. All ten of these ARF genes and their prominent expression signify their importance within the development of each respective root type. This study provides comprehensive information regarding the ARF family in sweet potatoes, which will be useful for future research to discover further functional verification of these ItfARF genesECU Open Access Publishing Support Fun

    Response of Root Growth and Development to Nitrogen and Potassium Deficiency as well as microRNA-Mediated Mechanism in Peanut (Arachis hypogaea L.)

    Get PDF
    The mechanism of miRNA-mediated root growth and development in response to nutrient deficiency in peanut (Arachis hypogaea L.) is still unclear. In the present study, we found that both nitrogen (N) and potassium (K) deficiency resulted in a significant reduction in plant growth, as indicated by the significantly decreased dry weight of both shoot and root tissues under N or K deficiency. Both N and K deficiency significantly reduced the root length, root surface area, root volume, root vitality, and weakened root respiration, as indicated by the reduced O2 consuming rate. N deficiency significantly decreased primary root length and lateral root number, which might be associated with the upregulation of miR160, miR167, miR393, and miR396, and the downregulation of AFB3 and GRF. The primary and lateral root responses to K deficiency were opposite to that of the N deficiency condition. The upregulated miR156, miR390, NAC4, ARF2, and AFB3, and the downregulated miR160, miR164, miR393, and SPL10 may have contributed to the growth of primary roots and lateral roots under K deficiency. Overall, roots responded differently to the N or K deficiency stresses in peanuts, potentially due to the miRNA-mediated pathway and mechanism

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Genome-Wide Identification of ARF Transcription Factor Gene Family and Their Expression Analysis in Sweet Potato

    No full text
    Auxin response factors (ARFs) are a family of transcription factors that play an important role of auxin regulation through their binding with auxin response elements. ARF genes are represented by a large multigene family in plants\; however, to our knowledge, the ARF gene family has not been well studied and characterized in sweet potatoes. In this study, a total of 25 ARF genes were identified in Ipomea trifida. The identified ItrARF genes’ conserved motifs, chromosomal locations, phylogenetic relationships, and their protein characteristics were systemically investigated using different bioinformatics tools. The expression patterns of ItfARF genes were analyzed within the storage roots and normal roots at an early stage of development. ItfARF16b and ItfARF16c were both highly expressed in the storage root, with minimal to no expression in the normal root. ItfARF6a and ItfARF10a exhibited higher expression in the normal root but not in the storage root. Subsequently, ItfARF1a, ItfARF2b, ItfARF3a, ItfARF6b, ItfARF8a, ItfARF8b, and ItfARF10b were expressed in both root types with moderate to high expression for each. All ten of these ARF genes and their prominent expression signify their importance within the development of each respective root type. This study provides comprehensive information regarding the ARF family in sweet potatoes, which will be useful for future research to discover further functional verification of these ItfARF gene
    corecore