3,496 research outputs found

    Chiral model approach to quark matter nucleation in neutron stars

    Full text link
    The nucleation process of quark matter in both cold and hot dense hadronic matter is investigated using a chiral approach to describe the quark phase. We use the Nambu-Jona-Lasinio and the Chromo Dielectric models to describe the deconfined phase and the non-linear Walecka model for the hadronic one. The effect of hyperons on the transition phase between hadronic and quark matter is studied. The consequences of the nucleation process for neutron star physics are outlined

    Programmable quantum gate arrays

    Get PDF
    We show how to construct quantum gate arrays that can be programmed to perform different unitary operations on a data register, depending on the input to some program register. It is shown that a universal quantum gate array - a gate array which can be programmed to perform any unitary operation - exists only if one allows the gate array to operate in a probabilistic fashion. The universal quantum gate array we construct requires an exponentially smaller number of gates than a classical universal gate array.Comment: 3 pages, REVTEX. Submitted to Phys. Rev. Let

    An Intelligent Archive Testbed Incorporating Data Mining

    Get PDF
    Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of interoperability, and being able to convert data to information and usable knowledge in an efficient, convenient manner, aided significantly by automation (Ramapriyan et al. 2004; NASA 2005). We can look upon the distributed provider environment with capabilities to convert data to information and to knowledge as an Intelligent Archive in the Context of a Knowledge Building system (IA-KBS). Some of the key capabilities of an IA-KBS are: Virtual Product Generation, Significant Event Detection, Automated Data Quality Assessment, Large-Scale Data Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Requesting (Ramapriyan et al. 2004)

    Optimal static and dynamic recycling of defective binary devices

    Full text link
    The binary Defect Combination Problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular, the region in the parameter space where there is almost surely at least one fully-working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.Comment: 14 pages, 15 figure

    Quantum Bit Regeneration

    Get PDF
    Decoherence and loss will limit the practicality of quantum cryptography and computing unless successful error correction techniques are developed. To this end, we have discovered a new scheme for perfectly detecting and rejecting the error caused by loss (amplitude damping to a reservoir at T=0), based on using a dual-rail representation of a quantum bit. This is possible because (1) balanced loss does not perform a ``which-path'' measurement in an interferometer, and (2) balanced quantum nondemolition measurement of the ``total'' photon number can be used to detect loss-induced quantum jumps without disturbing the quantum coherence essential to the quantum bit. Our results are immediately applicable to optical quantum computers using single photonics devices.Comment: 4 pages, postscript only, figures available at http://feynman.stanford.edu/qcom

    A variational approach for the Quantum Inverse Scattering Method

    Full text link
    We introduce a variational approach for the Quantum Inverse Scattering Method to exactly solve a class of Hamiltonians via Bethe ansatz methods. We undertake this in a manner which does not rely on any prior knowledge of integrability through the existence of a set of conserved operators. The procedure is conducted in the framework of Hamiltonians describing the crossover between the low-temperature phenomena of superconductivity, in the Bardeen-Cooper-Schrieffer (BCS) theory, and Bose-Einstein condensation (BEC). The Hamiltonians considered describe systems with interacting Cooper pairs and a bosonic degree of freedom. We obtain general exact solvability requirements which include seven subcases which have previously appeared in the literature.Comment: 18 pages, no eps figure

    Nuclear symmetry energy and the role of the tensor force

    Full text link
    Using the Hellmann--Feynman theorem we analyze the contribution of the different terms of the nucleon-nucleon interaction to the nuclear symmetry energy EsymE_{sym} and the slope parameter LL. The analysis is performed within the microscopic Brueckner--Hartree--Fock approach using the Argonne V18 potential plus the Urbana IX three-body force. We find that the main contribution to EsymE_{sym} and LL is due to the tensor component of the nuclear force.Comment: 4 pages, 4 table
    • …
    corecore