12,960 research outputs found
Modeling of hydrogen-air diffusion flame
Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described
Multiplication Operators on Weighted Banach Spaces of a Tree
We study multiplication operators on the weighted Banach spaces of an
infinite tree. We characterize the bounded and the compact operators, as well
as determine the operator norm. In addition, we determine the spectrum of the
bounded multiplication operators and characterize the isometries. Finally, we
study the multiplication operators between the weighted Banach spaces and the
Lipschitz space by characterizing the bounded and the compact operators,
determine estimates on the operator norm, and show there are no isometries
From land to lands, from Eden to the renewed earth: a Christ-centred biblical theology of the promised land
The theology of the land must start in the Garden of Eden. Eden is a sanctuary, a covenanted land, and a royal garden. Eden is proto-land, and Adam is proto-Israel. Starting in Eden underlines the universal dimension of the land promise and its conditionality. It also elevates ethical behaviour above the gift. The theology of the land in the OT reflects these Edenic themes: holiness, covenant, and kingdom. First, the holiness of the land depends on the presence of God in the land, and on the holiness of its dwellers; there is no permanent holy place in the OT. Secondly, the land is a gift under treaty; the goal of the gift is establishing an ideal covenantal community that witnesses to other nations in other lands. Thirdly, the land is the sphere of God’s reign on earth through his vicegerent. The vicegerent brings justice and peace to the land. God remains the ultimate king in the land. The original promise to Israel is a promise of universal dominion. After the exile, the prophets spoke of a time in which the land would become an ideal place. This ideal land is, effectively, Eden restored. The restoration of the land ultimately points forward to the restoration of the earth. The land in the OT underlines the social dimension to redemption. Yet, importantly, Israel’s faith can survive without the land. The Jesus-event is the starting place for the theology of the land in the NT. Jesus restored Israel and fulfilled the promises of the OT, including the land. He embodied the holy presence of God on earth, kept the covenant on behalf of Israel, and brought the reign of God on earth. He inherited the land, and in him Jews and Gentile are its true heirs. This radical new fulfilment, brought about by the Jesus-event, dramatically changed the meaning of the land and nullified the old promises in their old articulation. The NT points forward to a time of consummation when the whole earth will become an ideal place or a redeemed land. The land has thus been universalized in Christ. Universalization does not mean the ‘spiritualization’ or ‘heavenization’. Instead, the theology of the land of Israel – modified in the Jesus-event – is a paradigm for Christian communities living in other lands. The theology of the land thus underlines the social and territorial dimensions of redemption. It also highlights the goodness of creation, and has many practical implications for the ongoing mission and practice of the Church throughout the world
The Mystery of Capital and the Construction of Social Reality
John Searle’s The Construction of Social Reality and Hernando de Soto’s The Mystery of Capital shifted the focus of current thought on capital and economic development to the cultural and conceptual ideas that underpin market economies and that are taken for granted in developed nations. This collection of essays assembles 21 philosophers, economists, and political scientists to help readers understand these exciting new theories
Cavity approach to the spectral density of non-Hermitian sparse matrices
The spectral densities of ensembles of non-Hermitian sparse random matrices
are analysed using the cavity method. We present a set of equations from which
the spectral density of a given ensemble can be efficiently and exactly
calculated. Within this approach, the generalised Girko's law is recovered
easily. We compare our results with direct diagonalisation for a number of
random matrix ensembles, finding excellent agreement.Comment: 4 pages, 3 figure
- …