413 research outputs found

    Formulation of School Board Policies for the South Bend Public Schools

    Get PDF
    The purpose of this study is to develop a set of written school board policies for and with the cooperation of the Board of Directors of the South Bend, Washington, School District 118. Board authorization was given to investigate and write a permanent set of policies for action by the board

    Error and anomaly detection for intra-participant time-series data

    Get PDF
    Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data

    An applied paradigm for simple analysis of the lower limb kinematic chain in explosive movements: an example using the fencing foil attacking lunge

    Get PDF
    A simple method to quantify the kinematic chain in a propulsive task would facilitate assessment of athlete effectiveness. The study’s aim was to assess if the kinematic chain distinguishes between skill levels. Fencers were separated into two groups based on attacking lunge ability (7 skilled; 8 novices). Rear leg 3D joint angular extension velocity magnitudes and timings, sword kinematics and rear leg kinetics were obtained in the propulsion phase of the attacking lunge. Skilled fencers obtained greater sword velocity (3.24 ± 0.24 m∙s−1 vs. 2.69 ± 0.29 m∙s−1; p = 0.02). The skilled group had a greater sequential kinematic chain of the hip, knee and ankle, demonstrated by significantly greater ankle angular velocity (9.1 ± 2.1 rad·s−1 skilled; 5.4 ± 2.9 rad·s−1 novice). Ankle plantarflexion velocity showed a strong positive correlation with horizontal peak force (r = 0.81; p < 0.01). The skilled group demonstrated greater horizontal impulse (1.85 ± 0.29 N·s·kg−1 skilled; 1.45 ± 0.32 N·s·kg−1 novice), suggesting greater effectiveness in applying the kinematic chain towards horizontal propulsion. Analysis of the kinematic chain, which was able to distinguish between skill levels in a propulsive task, is an effective and simple paradigm to assess whole limb contributions to propulsive movements

    Functional phases and angular momentum characteristics of Tkatchev and Kovacs

    Get PDF
    Understanding the technical requirements and underlying biomechanics of complex release and re-grasp skills on high bar allows coaches and scientists to develop safe and effective training programmes. The aim of this study was to examine the differences in the functional phases between the Tkatchev and Kovacs skills and to explain how the angular momentum demands are addressed. Images of 18 gymnasts performing 10 Tkatchevs and 8 Kovacs at the Olympic Games were recorded (50 Hz), digitised and reconstructed (3D Direct Linear Transformation). Orientation of the functional phase action, defined by the rapid flexion to extension of the shoulders and extension to flexion of the hips as the performer passed through the lower vertical, along with shoulder and hip angular kinematics, angular momentum and key release parameters (body angle, mass centre velocity and angular momentum about the mass centre and bar) were compared between skills. Expected differences in the release parameters of angle, angular momentum and velocity were observed and the specific mechanical requirement of each skill were highlighted. Whilst there were no differences in joint kinematics, hip and shoulder functional phase were significantly earlier in the circle for the Tkatchev. These findings highlight the importance of the orientation of the functional phase in the preceding giant swing and provide coaches with further understanding of the critical timing in this key phase

    Influence of longswing technique on the kinematics and key release parameters of the straddle Tkachev on uneven bars

    Get PDF
    Tkachev on uneven bars is a release and re-grasp skill performed using variations of preparatory longswing techniques; the reasons why different techniques are chosen remains unclear. This study examined kinematic and key release parameters specific to three distinct techniques with the aim of understanding the relative benefits of each. During two international artistic gymnastics competitions six arch, straddle and pike longswings preceding the straddle Tkachev were recorded using twin video cameras. Calibration and movement images were digitised and reconstructed using 3D DLT. Shoulder and hip angular kinematics, angular momentum and key release parameters were compared between techniques. In the arch longswing, the first and second hip functional phases began significantly earlier than the straddle or pike. No significant differences were established for release parameters although large effect sizes for horizontal release velocity and angular momenta about the mass centre and bar were reported between the arch and other two variants. Therefore, the arch variant may provide the opportunity to develop more complex combinations following the Tkachev. Providing insight into mechanical advantages of specific longswing techniques, and highlighting those that elicit desirable characteristics offers the potential to provide coaches with objective data on technique selection and ultimately skill development

    Changes in joint kinetics during learning the longswing on high bar

    Get PDF
    Biomechanics helps us understand the association between technique changes and performance improvement during learning. The aim of this research was to investigate joint kinetic characteristics of technique during learning of the longswing on the high bar. Twelve male, novice participants took part in the learning study. During swing attempts in 8 weekly testing sessions, kinematic data were collected. Inverse dynamics analysis was performed from known zero forces at the toes to quantify joint moments and power at the hips and shoulders. Key biomechanical constraints that limited performance outcome were identified based on changes in joint kinetics during learning. These constraints were the ability to perform a large shoulder power and to overcome passive kinetics acting during the downswing. Constraints to action at the level of joint kinetics differentially challenge learners and therefore could underpin more individual, specific learning interventions. Functional phases, defined by maximum hyperextension to flexion of the hips and maximum flexion to extension of the shoulders, did not describe the key joint kinetics of the hip and shoulder for novices. The functional phases may serve however to identify novices that were unable to overcome the passive kinetic constraint

    The influence of hand positions on biomechanical injury risk factors at the wrist joint during the round-off skills in female gymnastics

    Get PDF
    The aim of this study was to examine the biomechanical injury risk factors at the wrist, including joint kinetics, kinematics and stiffness in the first and second contact limb for parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back handspring with parallel and T-shape hand positions. Synchronised kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. A two-way repeated measure analysis of variance (ANOVA) assessed differences in the kinematic and kinetic parameters between the techniques for each contact limb. The main findings highlighted that in both the RO techniques, the second contact limb wrist joint is exposed to higher mechanical loads than the first contact limb demonstrated by increased axial compression force and loading rate. In the parallel technique, the second contact limb wrist joint is exposed to higher axial compression load. Differences between wrist joint kinetics highlight that the T-shape technique may potentially lead to reducing these bio-physical loads and consequently protect the second contact limb wrist joint from overload and biological failure. Highlighting the biomechanical risk factors facilitates the process of technique selection making more objective and safe

    Technique selection ‘the coaches challenge’ influencing injury risk during the first contact hand of the round off skill in female gymnastics

    Get PDF
    The importance of technique selection on elbow injury risk has been identified for the key round off skill in female gymnastics, with a focus on the second contact limb. The aim of this study was to shift the focus to the first contact limb and investigate the biomechanical injury risk during parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back-handspring with parallel and T-shape hand positions. Synchronized kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. The t-test with effect size statistics determined differences between the two techniques. No significant differences were found for vertical, anterior posterior and resultant ground reaction force, elbow joint kinematics and kinetics. Specifically, the results highlighted that change in technique in RO skills did not influence first contact limb elbow joint mechanics and therefore, injury risk. The findings of the present study suggest the injury potential of this skill is focused on the second limb during the parallel technique of this fundamental gymnastic skill

    Multidimensional joint coupling: a case study visualisation approach to movement coordination and variability

    Get PDF
    A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics

    Biomechanical energetic analysis of technique during learning the longswing on high bar

    Get PDF
    Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions
    corecore