96 research outputs found
Recognition of non face objects, designed to require the same stimulus processing as that for faces, show only minimal effects of differences in contrast polarity or orientation direction
Please see attached pd
Representation of Shape in Individuals From a Culture With Minimal Exposure to Regular, Simple Artifacts: Sensitivity to Nonaccidental Versus Metric Properties
Many of the phenomena underlying shape recognition can be derived from the greater sensitivity to nonaccidental properties of an image (e.g., whether a contour is straight or curved), which are invariant to orientation in depth, than to the metric properties of an image (e.g., a contour's degree of curvature), which can vary with orientation. What enables this sensitivity? One explanation is that it derives from people's immersion in a manufactured world in which simple, regular shapes distinguished by nonaccidental properties abound (e.g., a can, a brick), and toddlers are encouraged to play with toy shape sorters. This report provides evidence against this explanation. The Himba, a seminomadic people living in a remote region of northwestern Namibia where there is little exposure to regular, simple artifacts, were virtually identical to Western observers in their greater sensitivity to nonaccidental properties than to metric properties of simple shapes
Recommended from our members
Empirical Analyses and Connectionist Modeling of Real-Time Human Image Understanding
Greater sensitivity to nonaccidental than metric shape properties in preschool children
AbstractNonaccidental properties (NAPs) are image properties that are invariant over orientation in depth and allow facile recognition of objects at varied orientations. NAPs are distinguished from metric properties (MPs) that generally vary continuously with changes in orientation in depth. While a number of studies have demonstrated greater sensitivity to NAPs in human adults, pigeons, and macaque IT cells, the few studies that investigated sensitivities in preschool children did not find significantly greater sensitivity to NAPs. However, these studies did not provide a principled measure of the physical image differences for the MP and NAP variations. We assessed sensitivity to NAP vs. MP differences in a nonmatch-to-sample task in which 14 preschool children were instructed to choose which of two shapes was different from a sample shape in a triangular display. Importantly, we scaled the shape differences so that MP and NAP differences were roughly equal (although the MP differences were slightly larger), using the Gabor-Jet model of V1 similarity (Lades & et al., 1993). Mean reaction times (RTs) for every child were shorter when the target shape differed from the sample in a NAP than an MP. The results suggest that preschoolers, like adults, are more sensitive to NAPs, which could explain their ability to rapidly learn new objects, even without observing them from every possible orientation
Predicting the psychophysical similarity of faces and non-face complex shapes by image-based measures
AbstractShape representation is accomplished by a series of cortical stages in which cells in the first stage (V1) have local receptive fields tuned to contrast at a particular scale and orientation, each well modeled as a Gabor filter. In succeeding stages, the representation becomes largely invariant to Gabor coding (Kobatake & Tanaka, 1994). Because of the non-Gabor tuning in these later stages, which must be engaged for a behavioral response (Tong, 2003; Tong et al., 1998), a V1-based measure of shape similarity based on Gabor filtering would not be expected to be highly correlated with human performance when discriminating complex shapes (faces and teeth-like blobs) that differ metrically on a two-choice, match-to-sample task. Here we show that human performance is highly correlated with Gabor-based image measures (Gabor simple and complex cells), with values often in the mid 0.90s, even without discounting the variability in the speed and accuracy of performance not associated with the similarity of the distractors. This high correlation is generally maintained through the stages of HMAX, a model that builds upon the Gabor metric and develops units for complex features and larger receptive fields. This is the first report of the psychophysical similarity of complex shapes being predictable from a biologically motivated, physical measure of similarity. As accurate as these measures were for accounting for metric variation, a simple demonstration showed that all were insensitive to viewpoint invariant (nonaccidental) differences in shape
Perceptual Context in Cognitive Hierarchies
Cognition does not only depend on bottom-up sensor feature abstraction, but
also relies on contextual information being passed top-down. Context is higher
level information that helps to predict belief states at lower levels. The main
contribution of this paper is to provide a formalisation of perceptual context
and its integration into a new process model for cognitive hierarchies. Several
simple instantiations of a cognitive hierarchy are used to illustrate the role
of context. Notably, we demonstrate the use context in a novel approach to
visually track the pose of rigid objects with just a 2D camera
A cross-cultural study of the representation of shape: Sensitivity to generalized cone dimensions
Many of the phenomena underlying shape recognition can be derived from an assumption that the representation of simple parts can be understood in terms of independent dimensions of generalized cones, e.g., whether the axis of a cylinder is straight or curved or whether the sides are parallel or nonparallel. What enables this sensitivity? One explanation is that the representations derive from our immersion in a manufactured world of simple objects, e.g., a cylinder and a funnel, where these dimensions can be readily discerned independent of other stimulus variations. An alternative explanation is that genetic coding and/or early experience with extended contours - a characteristic of all naturally varying visual worlds - would be sufficient to develop the appropriate representations. The Himba, a seminomadic people in a remote region of Northwestern Namibia with little exposure to regular, simple artifacts, were virtually identical to western observers in representing generalized-cone dimensions of simple shapes independently. Thus immersion in a world of simple, manufactured shapes is not required for the development of a representation that specifies these dimensions independently
- …