5,127 research outputs found
The chemistry of dense interstellar clouds
The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase
Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula
The first interstellar hydrocarbon ring, cyclopropenylidene (C3H2) is being studied. Both a survey of galactic sources in several C3H2 transitions and a more detailed study of a subset of these sources are under way. In the latter category is a study of the nearby cold dark cloud TMC-1, which is a potential formation site for solar type stars. A spectra is shown of seven rotational transitions which have been observed at the Five College Radio Astronomy Observatory. Three of these were detected for the first time in any astronomical source: the 3 sub 30 to 2 sub 21 transition at 216 GHz, the 2 sub 21 to 1 sub 10 transition at 122 GHz, and the 1 sub 11 to 0 sub 00 transition at 52 GHz. From the data it is apparent that C3H2 is quite spacially extended in typical interstellar molecular clouds, and that at least in TMC-1 it is one of the most abundant organic molecules
Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula
Two additional hyperfine components of the interstellar radical C3H were detected. In addition, methanol was discovered in interstellar clouds. The abundance of HCCN and various chemical isomers in molecular clouds was investigated
Studies of radiative transfer in planetary atmospheres
Progress is reported in modeling cometary emission in the 18-cm OH transition with specific application and predictions for Comet Halley. Radiative transfer is also being studied in rough and porous media. The kinematics of the cold, dark interstellar cloud Li34N were examined, and CO monitoring of Venus and Mars continues. Analysis of 3.4 mm maps of the lunar surface shows thermal anomalies associated with such surface features as the Crater Copernicus, Mare Imbrium, Mare Nubium, Mare Serenitatis, and Mare Tranquillatis
Studies of radiative transfer in planetary atmospheres
The research emphasis during the period of this report has been on radio observations of comets, related to the International Halley Watch. Observations of the 18 cm lambda-doublet of OH have been carried out monthly. Both of the 1667 and 1665 MHz lines have been repeatedly detected for Comets Halley, Giacobini-Zinner, Thiele, and Hartley-Good. The first astronomical detection of the weak satellite line at 1720 MHz was made for P/Halley. These data promise to supply the highest signal-to-noise-ratio data over an extended period ever obtained for cometary radio observations. Analysis will provide gas production rates as a function of heliocentric distance and allow for detailed comparisons with the OH excitation model involving ultraviolet pumping. In the case of Halley, the lines appear quite symmetric, usually being centered within 0.1 km/s with respect to the nominal nuclear velocity. Line widths have been typically within 10% of 2 km/s. There is thus little evidence for asymmetric emission in the data obtained to date. It seems likely that non-steady-state models of the coma will be required to interpret the data. Evidence for significant departures from the LTE hyperfine ratios was found for Comet Giacobini-Zinner. Smaller, but nonetheless significant, deviations have been found for Comet Halley
Studies of radiative transfer in planetary atmospheres
Schloerb and Claussen continued their analysis of the very high quality data set obtained on the 18 centimeter OH line from the Comet P/Halley with the NRAO 43 meter antenna. The high spectral resolution (0.22 km/sec) and high signal-to-noise of the OH spectra make them ideal for the study of kinematics in the coma. Synthetic profiles were initiated for comparison with the data. A vectorial model was developed using the Monte Carlo techniques originated by Combi and Delsemme. Analysis of the millimeter wavelength observations of HCN emission from P/Halley obtained throughout much of the recent apparition were continued using the University of Massachusetts 14 millimeter-wavelength (FCRAO) antenna. A detailed analysis of the HCN lineshpaes was performed over the last six months. The excitation of HCN in the coma was studied to obtain a detailed match to the observed spectra. The passive millimeter wave radiometer was used to probe the physical and chemical nature of comets from spacecraft. Work was continued on an improved theory of radiative transfer for rough and porous surfaces, such as the regoliths of satellites, asteroids, and comets
The Life of a Vortex Knot
The idea that the knottedness (hydrodynamic Helicity) of a fluid flow is
conserved has a long history in fluid mechanics. The quintessential example of
a knotted flow is a knotted vortex filament, however, owing to experimental
difficulties, it has not been possible until recently to directly generate
knotted vortices in real fluids. Using 3D printed hydrofoils and high-speed
laser scanning tomography, we generate vortex knots and links and measure their
subsequent evolution. In both cases, we find that the vortices deform and
stretch until a series of vortex reconnections occurs, eventually resulting
several disjoint vortex rings.
This article accompanies a fluid dynamics video entered into the Gallery of
Fluid Motion at the 66th Annual Meeting of the APS Division of Fluid Dynamics.Comment: Videos are included; this submission is part of the DFD Gallery of
Fluid Motio
Metalation and Structural Properties of apo-Metallothioneins
Metals are required by a quarter of all proteins to achieve their biological function, whether in an active site involved in catalytic chemistry or in a structural capacity. Metals are tightly regulated at the cellular level due to their propensity to cause unwanted side reactions and to be scavenged for use by pathogens. One of the proteins involved in this regulation of metal homeostasis is metallothionein (MT) which is a small, cysteine rich protein primarily involved in the regulation of zinc and copper homeostasis and heavy metal detoxification. MT is unique in its high cysteine content (~30% of the residues), its high capacity for metal binding and its fluxional structure in the absence of metal saturation. This fluxionality has made the structure of apo- and partially-metalated MTs difficult to study and as a result the binding pathway of MT for various metals remains unclear.
This thesis describes the hard-to-characterize structure of apo- and partially-metalated MTs, their binding pathways and potential applications. Using primarily electrospray ionization mass spectrometry (ESI-MS) and covalent labeling, the structure of apo- and partially metalated MTs was probed. Modeling techniques that generate simulated ESI-MS data were used to recreate the covalent labeling spectra and aid in the interpretation of this complicated reaction. These experiments showed that apo-MT adopts a compact, globular conformation that is resistant to initial modification by alkylating reagents. Furthermore, this compact conformation is essential to the fast kinetics of cadmium binding and cluster formation. This cluster formation was found to be pH dependent and this insight was essential in the design of an MT-based biosensor for the detection of As(III) and Hg(II). Altogether, these results reconcile previous conflicting reports about the metal binding mechanisms of MTs, provide evidence of compact conformations of apo-MT and its role in binding kinetics and begin to demonstrate potential application of this fundamental knowledge in the design and testing of an electrochemical MT-based biosensor
- …