4,453 research outputs found
Drawing bobbin lace graphs, or, Fundamental cycles for a subclass of periodic graphs
In this paper, we study a class of graph drawings that arise from bobbin lace
patterns. The drawings are periodic and require a combinatorial embedding with
specific properties which we outline and demonstrate can be verified in linear
time. In addition, a lace graph drawing has a topological requirement: it
contains a set of non-contractible directed cycles which must be homotopic to
, that is, when drawn on a torus, each cycle wraps once around the minor
meridian axis and zero times around the major longitude axis. We provide an
algorithm for finding the two fundamental cycles of a canonical rectangular
schema in a supergraph that enforces this topological constraint. The polygonal
schema is then used to produce a straight-line drawing of the lace graph inside
a rectangular frame. We argue that such a polygonal schema always exists for
combinatorial embeddings satisfying the conditions of bobbin lace patterns, and
that we can therefore create a pattern, given a graph with a fixed
combinatorial embedding of genus one.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Mortality associated with avian reovirus infection in a free-living magpie (Pica pica) in Great Britain
Avian reoviruses (ARVs) cause a range of disease presentations in domestic, captive and free-living bird species. ARVs have been reported as a cause of significant disease and mortality in free-living corvid species in North America and continental Europe. Until this report, there have been no confirmed cases of ARV-associated disease in British wild birds
Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-µm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g–1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g–1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions
Projected free energies for polydisperse phase equilibria
A `polydisperse' system has an infinite number of conserved densities. We
give a rational procedure for projecting its infinite-dimensional free energy
surface onto a subspace comprising a finite number of linear combinations of
densities (`moments'), in which the phase behavior is then found as usual. If
the excess free energy of the system depends only on the moments used, exact
cloud, shadow and spinodal curves result; two- and multi-phase regions are
approximate, but refinable indefinitely by adding extra moments. The approach
is computationally robust and gives new geometrical insights into the
thermodynamics of polydispersity.Comment: 4 pages, REVTeX, uses multicol.sty and epsf.sty, 1 postscript figure
include
Low voltage control of ferromagnetism in a semiconductor p-n junction
The concept of low-voltage depletion and accumulation of electron charge in
semiconductors, utilized in field-effect transistors (FETs), is one of the
cornerstones of current information processing technologies. Spintronics which
is based on manipulating the collective state of electron spins in a
ferromagnet provides complementary technologies for reading magnetic bits or
for the solid-state memories. The integration of these two distinct areas of
microelectronics in one physical element, with a potentially major impact on
the power consumption and scalability of future devices, requires to find
efficient means for controlling magnetization electrically. Current induced
magnetization switching phenomena represent a promising step towards this goal,
however, they relay on relatively large current densities. The direct approach
of controlling the magnetization by low-voltage charge depletion effects is
seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets
are separated by many orders of magnitude in their typical carrier
concentrations. Here we demonstrate that this concept is viable by reporting
persistent magnetization switchings induced by short electrical pulses of a few
volts in an all-semiconductor, ferromagnetic p-n junction.Comment: 11 pages, 4 figure
Robust long-distance entanglement and a loophole-free Bell test with ions and photons
Two trapped ions that are kilometers apart can be entangled by the joint
detection of two photons, each coming from one of the ions, in a basis of
entangled states. Such a detection is possible with linear optical elements.
The use of two-photon interference allows entanglement distribution without
interferometric sensitivity to the path length of the photons. The present
method of creating entangled ions also opens up the possibility of a
loophole-free test of Bell's inequalities.Comment: published versio
Biodegradation of 3-chlorophenol in a sequencing batch reactor
The present paper shows the results obtained through a study on the biodegradation of 3-chlorophenol (3-CP) in a Sequencing Batch Reactor (SBR). To such a purpose a lab-scale SBR was fed a synthetic wastewater containing 3-CP and nutrients (nitrogen and phosphorus) diluted in tap water. The operating strategy, in terms of both the duration of either the cycle or the react phase, was changed throughout the experimental activity in order to find out the optimal one allowing to ensure constant and high removal efficiency despite the increasing 3-chlorophenol concentration in the feed. Biomass collected from a full-scale continuous flow activated sludge facility treating domestic wastewater was used as seed, after being acclimated to 3-CP by means of several batch tests. The results showed that a periodically operated activated sludge system can be successfully used for the biodegradation of chlorophenol compounds, after the needed members of the microbiological consortium are selected and enriched
Manipulating O3/P2 phase ratio in bi-phasic sodium layered oxides via ionic radius control
Funding: This work was supported by the Faraday Institution (Grant number FIRG018). The authors would like to thank Dr. David Rochester at Lancaster University for conducting the ICP-OES experiments. A.B.N. would like to acknowledge funding by the Engineering and Physical Sciences Research Council under grant numbers EP/L017008/1, EP/R023751/1, and EP/T019298/1 for the electron microscopy analysis.Bi-phasic O3/P2 sodium layered oxides have emerged as leading candidates for the commercialisation of next-generation sodium-ion batteries. However, beyond simply altering the sodium content, rational control of the O3/P2 ratio in these materials has proven particularly challenging despite being crucial for the realization of high-performance electrode materials. Here, using abundant elements, we manipulate the O3/P2 ratio using the average ionic radius of the transition metal layer and different synthesis conditions. These methods allow deterministic control over the O3/P2 ratio, even for constant Na contents. In addition, tuning the O3/P2 ratio yields high-performing materials with different performance characteristics, with a P2-rich material achieving high rate capabilities and excellent cycling stability (92% retention, 50 cycles), while an O3-rich material displayed an energy density up to 430 Wh kg−1, (85%, 50 cycles). These insights will help guide the rational design of future high-performance materials for sodium-ion batteries.Publisher PDFPeer reviewe
A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury
There is considerable evidence to support a number of biomechanical risk factors associated with non-contact anterior cruciate ligament (ACL) injury. This paper aimed to review these biomechanical risk factors and highlight future directions relating to them. Current perspectives investigating trunk position and relationships between strength, muscle activity and biomechanics during landing/cutting highlight the importance of increasing hamstring muscle force during dynamic movements through altering strength, muscle activity, muscle length and contraction velocity. In particular, increased trunk flexion during landing/cutting and greater hamstring strength are likely to increase hamstring muscle force during landing and cutting which have been associated with reduced ACL injury risk. Decision making has also been shown to influence landing biomechanics and should be considered when designing tasks to assess landing/cutting biomechanics. Coaches should therefore promote hamstring strength training and active trunk flexion during landing and cutting in an attempt to reduce ACL injury risk.Peer reviewe
- …