2,494 research outputs found

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II : internal resonance activation, reduced-order models and nonlinear normal modes

    Get PDF
    Resonant multi-modal dynamics due to planar 2:1 internal resonances in the nonlinear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1]. The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion

    Ovarian cancer--the need for change in service delivery in Northern Ireland.

    Get PDF
    This paper provides local data on the provision of services for patients diagnosed with ovarian cancer in 1996 prior to the reorganisation of cancer services. It documents a service for 140 patients provided by 80 consultant teams and illustrates the need for reorganisation to meet the evidence base already in existence for improvement in survival and will serve as a baseline for future audits in this area

    Topical Corticosteroids Normalize both Skin and Systemic Inflammatory Markers in Infant Atopic Dermatitis

    Get PDF
    Background: Atopic dermatitis (AD) is the most common inflammatory skin disease. It is highly heterogeneous in clinical presentation, treatment response, disease trajectory and associated atopic comorbidities. Immune biomarkers are dysregulated in skin and peripheral blood. Aims: We used noninvasive skin and peripheral biomarkers to observe the effects of real-world topical corticosteroid (TCS) treatment in infants with AD, by measuring skin and blood biomarkers before and after therapy. Methods: Seventy-four treatment-naïve infants with AD underwent 6 weeks of TCS treatment. Stratum corneum (SC) and plasma blood biomarkers as well as SC natural moisturizing factor (NMF) were measured before and after TCS therapy. Immune markers included innate, T helper (Th)1 and Th2 immunity, angiogenesis, and vascular factors. AD severity was assessed by the Scoring Atopic Dermatitis index, and skin barrier function by transepidermal water loss (TEWL). Twenty healthy infants were recruited as controls. Results: TCS therapy predictably led to improvement in disease severity. Levels of immune markers in the skin and in the peripheral blood showed significant change from baseline, though most did not reach healthy control levels. The most prominent change from baseline in the SC was in markers of innate immune activation, interleukin (IL)-18, IL-8 and IL-1α, and the Th2 chemokines C-C motif chemokine (CCL)17 and CCL22. In blood, the largest changes were in Th2-skewed biomarkers: CCL17, IL-13, CCL22, IL-5, and CCL26. TEWL decreased after therapy; no significant changes from baseline were found for NMF. Conclusions: The profound impact of topical therapy on systemic biomarkers suggests that the skin compartment generates a major component of dysregulated systemic cytokines in infant AD. There may be long-term beneficial effects of correcting systemic immune dysregulation through topical therapy

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late

    Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    Get PDF
    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, H2H_2, H2OH_2O, CH4CH_4, COCO, NH3NH_3, H2SH_2S, PH3PH_3, and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical Journal Supplement Series, replaced with more compact emulateapj versio

    Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I : theoretical formulation and model validation

    Get PDF
    This paper is first of the two papers dealingwith analytical investigation of resonant multimodal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables - which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations - are presented. A multidimensional Galerkin expansion of the solution ofnonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effectsof quadratic/cubic nonlinearities, approximate closed form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation

    Albedo and Reflection Spectra of Extrasolar Giant Planets

    Full text link
    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51-Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, a Mie theory treatment of extinction by condensates, a variety of particle size distributions, and an extension of the Feautrier radiative transfer method which allows for a general treatment of the scattering phase function. We find that due to qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes: a ``Jovian'' class (Teff≲150_{\rm eff} \lesssim 150 K; Class I) with tropospheric ammonia clouds, a ``water cloud'' class (Teff∼250_{\rm eff} \sim 250 K; Class II) primarily affected by condensed H2_2O, a ``clear'' class (Teff≳350_{\rm eff} \gtrsim 350 K; Class III) which lacks clouds, and two high-temperature classes: Class IV (900 K ≲\lesssim Teff_{\rm{eff}} ≲\lesssim 1500 K) for which alkali metal absorption predominates, and Class V (Teff_{\rm{eff}} ≳\gtrsim 1500 K and/or low surface gravity (≲\lesssim 103^3 cm s−2^{-2})) for which a high silicate layer shields a significant fraction of the incident radiation from alkali metal and molecular absorption. The resonance lines of sodium and potassium are expected to be salient features in the reflection spectra of Class III, IV, and V objects. We derive Bond albedos and effective temperatures for the full set of known EGPs and explore the possible effects of non-equilibrium condensed products of photolysis above or within principal cloud decks. As in Jupiter, such species can lower the UV/blue albedo substantially, even if present in relatively small mixing ratios.Comment: revised LaTeX manuscript accepted to Ap.J.; also available at http://jupiter.as.arizona.edu/~burrows/paper

    CO emission from supernova remnants

    Get PDF
    In a search for molecular gas associated with supernova remnants, the CO line has been observed in three optical remnants: the Cygnus Loop, IC 443, and Cas A. In both the Cygnus Loop and IC 443, CO molecules are detected from dense clouds of the order of 100 solar masses, probably located at the edge of the expanding remnants. These are locations of particularly bright optical filaments and strong radio continuum emission. The foreground emission seen in Cas A exhibits changes on a small scale compared with the radio continuum, implying a low filling factor for molecular absorption lines in Cas A
    • …
    corecore