5,674 research outputs found
Aggregates of two-dimensional vesicles: Rouleaux and sheets
Using both numerical and variational minimization of the bending and adhesion
energy of two-dimensional lipid vesicles, we study their aggregation, and we
find that the stable aggregates include an infinite number of vesicles and that
they arrange either in a columnar or in a sheet-like structure. We calculate
the stability diagram and we discuss the modes of transformation between the
two types of aggregates, showing that they include disintegration as well as
intercalation.Comment: 4 figure
Prediction of blanket peat erosion across Great Britain under environmental change
A recently developed fluvial erosion model for blanket peatlands, PESERA-PEAT, was applied at ten sites across Great Britain to predict the response of blanket peat erosion to environmental change. Climate change to 2099 was derived from seven UKCP09 future projections and the UK Met Office’s historical dataset. Land management scenarios were established based on outputs from earlier published investigations. Modelling results suggested that as climate changes, the response of blanket peat erosion will be spatially very variable across Great Britain. Both relative changes and absolute values of sediment yield were predicted to be higher in southern and eastern areas than in western and northern parts of Great Britain, peaking in the North York Moors of eastern England. Areas with high precipitation and low temperature were predicted to have low relative erosion changes and absolute sediment yield. The model suggested that summer desiccation may become more important for blanket peat erosion under future climate change, and that temperature was more dominant than precipitation in controlling long-term blanket peat erosion change. However, in the North York Moors, precipitation appeared to be more dominant in driving long-term erosion change. Land management measures were shown to provide a means to mitigate against the impacts of climate change on blanket peat erosion
Spin gating electrical current
We use an aluminium single electron transistor with a magnetic gate to
directly quantify the chemical potential anisotropy of GaMnAs materials.
Uniaxial and cubic contributions to the chemical potential anisotropy are
determined from field rotation experiments. In performing magnetic field sweeps
we observe additional isotropic magnetic field dependence of the chemical
potential which shows a non-monotonic behavior. The observed effects are
explained by calculations based on the kinetic
exchange model of ferromagnetism in GaMnAs. Our device inverts the conventional
approach for constructing spin transistors: instead of spin-transport
controlled by ordinary gates we spin-gate ordinary charge transport.Comment: 5 pages, 4 figure
Projected free energies for polydisperse phase equilibria
A `polydisperse' system has an infinite number of conserved densities. We
give a rational procedure for projecting its infinite-dimensional free energy
surface onto a subspace comprising a finite number of linear combinations of
densities (`moments'), in which the phase behavior is then found as usual. If
the excess free energy of the system depends only on the moments used, exact
cloud, shadow and spinodal curves result; two- and multi-phase regions are
approximate, but refinable indefinitely by adding extra moments. The approach
is computationally robust and gives new geometrical insights into the
thermodynamics of polydispersity.Comment: 4 pages, REVTeX, uses multicol.sty and epsf.sty, 1 postscript figure
include
Reconfigurable Boolean Logic using Magnetic Single-Electron Transistors
We propose a novel hybrid single-electron device for reprogrammable low-power
logic operations, the magnetic single-electron transistor (MSET). The device
consists of an aluminium single-electron transistors with a GaMnAs magnetic
back-gate. Changing between different logic gate functions is realized by
reorienting the magnetic moments of the magnetic layer which induce a voltage
shift on the Coulomb blockade oscillations of the MSET. We show that we can
arbitrarily reprogram the function of the device from an n-type SET for
in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane
magnetization orientation. Moreover, we demonstrate a set of reprogrammable
Boolean gates and its logical complement at the single device level. Finally,
we propose two sets of reconfigurable binary gates using combinations of two
MSETs in a pull-down network
Recommended from our members
A Lagrangian analysis of ice-supersaturated air over the North Atlantic
Understanding the nature of air parcels that exhibit ice-supersaturation is important because they are the regions of potential formation of both cirrus and aircraft contrails, which affect the radiation balance. Ice-supersaturated air parcels in the upper troposphere and lower stratosphere over the North Atlantic are investigated using Lagrangian trajectories. The trajectory calculations use ERA-Interim data for three winter and three summer seasons, resulting in approximately 200,000 trajectories with ice-supersaturation for each season. For both summer and winter, the median duration of ice-supersaturation along a trajectory is less than 6 hours. 5% of air which becomes ice-supersaturated in the troposphere, and 23% of air which becomes ice-supersaturated in the stratosphere will remain ice-supersaturated for at least 24 hours. Weighting the ice-supersaturation duration with the observed frequency indicates the likely overall importance of the longer duration ice-supersaturated trajectories. Ice-supersaturated air parcels typically experience a decrease in moisture content while ice-supersaturated, suggesting that cirrus clouds eventually form in the majority of such air. A comparison is made between short-lived (less than 24 h) and long-lived (greater than 24 h) ice-supersaturated air flows. For both air flows, ice-supersaturation occurs around the northernmost part of the trajectory. Short-lived ice-supersaturated air flows show no significant differences in speed or direction of movement to subsaturated air parcels. However, long-lived ice-supersaturated air occurs in slower moving air flows, which implies that they are not associated with the fastest moving air through a jet stream
Antigen Delivery by Lipid-Enveloped PLGA Microparticle Vaccines Mediated by in Situ Vesicle Shedding
Lipid-coated poly(lactide-co-glycolide) microparticles (LCMPs) consist of a solid polymer core wrapped by a surface lipid bilayer. Previous studies demonstrated that immunization with LCMPs surface-decorated with nanograms of antigen elicit potent humoral immune responses in mice. However, the mechanism of action for these vaccines remained unclear, as LCMPs are too large to drain efficiently to lymph nodes from the vaccination site. Here, we characterized the stability of the lipid envelope of LCMPs and discovered that in the presence of serum the lipid coating of the particles spontaneously delaminates, shedding antigen-displaying vesicles. Lipid delamination generated 180 nm liposomes in a temperature- and lipid/serum-dependent manner. Vesicle shedding was restricted by inclusion of high-T[subscript M] lipids or cholesterol in the LCMP coating. Administration of LCMPs bearing stabilized lipid envelopes generated weaker antibody responses than those of shedding-competent LCMPs, suggesting that in situ release of antigen-loaded vesicles plays a key role in the remarkable potency of LCMPs as vaccine adjuvants.National Institutes of Health (U.S.) (AI091693)Bill & Melinda Gates FoundationRagon Institute of MGH, MIT and Harvar
Separable approximation to two-body matrix elements
Two-body matrix elements of arbitrary local interactions are written as the
sum of separable terms in a way that is well suited for the exchange and
pairing channels present in mean-field calculations. The expansion relies on
the transformation to center of mass and relative coordinate (in the spirit of
Talmi's method) and therefore it is only useful (finite number of expansion
terms) for harmonic oscillator single particle states. The converge of the
expansion with the number of terms retained is studied for a Gaussian two body
interaction. The limit of a contact (delta) force is also considered. Ways to
handle the general case are also discussed.Comment: 10 pages, 5 figures (for high resolution versions of some of the
figures contact the author
- …