2 research outputs found

    Training Manipulations Based on Acute Heart Rate Variability Measures

    Get PDF
    Heart rate variability (HRV) is an accurate indicator of sympathetic and parasympathetic nervous system activity. The balance between these systems affects the time between heartbeats. A high variability between heartbeats is equated to a greater influence from the parasympathetic nervous system. In this state, an individual is well rested, and therefore possesses higher readiness to perform physical activity. Through the use of smartphone applications (apps), athletes and coaches can collect accurate short-term HRV readings to assess autonomic nervous system balance. These apps provide a readiness to train score that may prove beneficial in adjusting daily training loads to maximize performance. PURPOSE: The purpose of this study is to characterize the changes in lower-body strength and power before and after a 6-week strength training program while manipulating intensity based on daily HRV readiness measures in female collegiate softball athletes. METHODS: Nine female NCAA Division II Softball athletes completed the 6-week training protocol. Participants were split into an experimental group (E; n = 5; age = 20.5±0.7 yrs, height = 166.9±2.7 cm, weight = 59.9±7.6 kg), who completed the training with the intensity adjusted based off of daily HRV readiness scores, and a control group (C; n = 4; age = 20.6±0.8 yrs, height = 171.7±1.2 cm, weight = 70.7±30.3 kg), who completed the training with no changes in exercise intensity. Measures of HRV were taken prior to each training session and used to calculate readiness scores with the use of a smartphone app. Participants completed 3 strength-training sessions per week throughout the study. Lower-body strength and power measurements were assessed before and after the protocol. One-repetition maximums on the back squat (SQ) and clean (CL) exercises and maximum vertical jump (VJ) height were collected. RESULTS: Lower-body power measurements were increased in the E group (CL: 51.3 vs. 56.9 kg, p = 0.047; VJ: 40.1 vs. 44.7 cm, p = 0.037) and the C group (CL: 56.8 vs. 63.6 kg, p = 0.021; VJ: 41.6 vs. 46.2 cm, p = 0.034), following 6 weeks of strength training. No significant differences were observed in lower body strength measurements in the E group (SQ: 74 vs. 84.1kg, p = 0.21) or the C group (SQ: 75.5 vs. 86.6 kg, p = 0.2). Significant differences were found between the prescribed volume of training and the completed volume of training (25364 vs 21650 kg, p = 0.014) in the E group. No significant differences (p \u3e 0.05) were found with SQ, CL, and VJ measures between the E and C groups following 6 weeks of strength training. No significant differences (p \u3e 0.05) were found in daily HRV measures between the E and C groups. CONCLUSION: Both groups exhibited similar HRV scores throughout the 6-week training protocol. Using daily short-term HRV readings, training intensity can be reduced without leading to any differences in lower-body strength and power improvements in female collegiate softball athletes

    The Dose Effect of Whey Protein on Insulin Responses in Pre-Diabetics and Type 2 Diabetics

    Get PDF
    People with pre-diabetes and type 2 diabetes have shown an increase in insulin secretion after ingesting 55 g of whey protein coupled with a glycemic challenge. However, the effect of lower amounts of whey protein on insulin responses remains unclear. Our hypothesis was that both 20 g and 30 g of whey consumption prior to an oral glucose tolerance test (OGTT) would produce an increase in insulin secretion, with 30 g producing the greatest increase compared to a control. PURPOSE: The purpose of this study was to examine the effect of two different doses of whey protein ingested 30 min prior to a 50 g OGTT on glucose, insulin, C-peptide, and glucagon responses. METHODS: Diabetic or pre-diabetic participants (n=9, mean ± SD; age: 64.3 + 8.1 yrs; BMI: 29.4 + 6.0 kg/m2; body fat percentage: 42.5 + 7.8 %; fasting plasma glucose: 6.9 + 1.2 mmol/l; HbA1c: 6.4 + 0.6 %) completed three trials. The randomly assigned trials consisted of: 250 ml of water (CON), 250 ml of water + 20 g whey (20g), and 250 ml of water + 30 g whey (30g), followed by an OGTT. Blood was collected at -30, 0, 15, 30, 60, 90, 120, and 150 min for the measurement of glucose, insulin, C-peptide, and glucagon. The whey protein mixture was administered immediately following the -30 min blood draw, and the 50 g OGTT began immediately following the 0 min blood draw. Glucose was analyzed using a YSI 2900D glucose analyzer and insulin, C-peptide, and glucagon were measured via multiplex fluorescent detection (MagPix). A one-way repeated measures ANOVA (pRESULTS: Incremental area under the curve (AUC) for glucose presented no difference between the 3 trials. Insulin AUC was significantly increased from CON to 20g (p=0.004, 36.3%), CON to 30g (p=0.002, 61.7%), and 20g to 30g (p=0.030, 18.6%). C-peptide and glucagon AUC significantly increased from CON to 20g (p=0.018, 20.6%; p=0.046, 33.1%) and CON to 30g (p=0.001, 30.1%; p=0.017, 33.7%). CONCLUSION: Whey protein elicited a dose response on plasma insulin, increasing concentrations from CON to 20g, and 20g to 30g, however plasma glucose was unaffected. 20g and 30g displayed similar responses for glucagon. Neither 20 g nor 30 g of whey protein may be adequate to provide glycemic improvement in the disease management of type 2 or pre-diabetes
    corecore