30 research outputs found

    Aromatic D-amino acids act as chemoattractant factors for human leukocytes through a G protein-coupled receptor, GPR109B

    Get PDF
    金沢大学医薬保健研究域医学系GPR109B (HM74) is a putative G protein-coupled receptor (GPCR) whose cognate ligands have yet to be characterized. GPR109B shows a high degree of sequence similarity to GPR109A, another GPCR that was identified as a high-affinity nicotinic acid (niacin) receptor. However, the affinity of nicotinic acid to GPR109B is very low. In this study, we found that certain aromatic D-amino acids, including D-phenylalanine, D-tryptophan, and the metabolite of the latter, D-kynurenine, decreased the activity of adenylate cyclase in cells transfected with GPR109B cDNA through activation of pertussis toxin (PTX)-sensitive G proteins. These D-amino acids also elicited a transient rise of intracellular Ca2+ level in cells expressing GPR109B in a PTX-sensitive manner. In contrast, these D-amino acids did not show any effects on cells expressing GPR109A. We found that the GPR109B mRNA is abundantly expressed in human neutrophils. D-phenylalanine and D-tryptophan induced a transient increase of intracellular Ca2+ level and a reduction of cAMP levels in human neutrophils. Furthermore, knockdown of GPR109B by RNA interference inhibited the D-amino acids-induced decrease of cellular cAMP levels in human neutrophils. These D-amino acids induced chemotactic activity of freshly prepared human neutrophils. We also found that D-phenylalanine and D-tryptophan induced chemotactic responses in Jurkat cells transfected with the GPR109B cDNA but not in mock-transfected Jurkat cells. These results suggest that these aromatic D-amino acids elicit a chemotactic response in human neutrophils via activation of GPR109B. © 2009 by The National Academy of Sciences of the USA

    Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-b pathway

    Get PDF
    AbstractObjectivesWe sought to clarify that a peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activator inhibits myocardial fibrosis and its resultant diastolic dysfunction in hypertensive heart disease, as well as to investigate whether inflammatory mediators through the nuclear factor (NF)-kappa-B pathway are involved in the effects.BackgroundPatients with hypertensive heart disease often have diastolic heart failure without systolic dysfunction. Meanwhile, it has been well established in atherosclerosis that PPAR-alpha activation negatively regulates early inflammation. In hypertensive hearts, however, it is still unclear whether PPAR-alpha activation inhibits inflammation and fibrosis.MethodsTwenty-one rats were randomly separated into the following three groups: deoxycorticosterone acetate (DOCA)-salt hypertensive rats treated with a PPAR-alpha activator, fenofibrate (80 mg/kg/day for 5 weeks); DOCA-salt rats treated with vehicle only; and uni-nephrectomized rats as normotensive controls.ResultsFenofibrate significantly inhibited the elevation of left ventricular end-diastolic pressure and the reduction of the magnitude of the negative maximum rate of left ventricular pressure rise and decline, corrected by left ventricular pressure (−dP/dtmax/P), which are indicators of diastolic dysfunction. Next, fenofibrate prevented myocardial fibrosis and reduced the hydroxyproline content and procollagen I and III messenger ribonucleic acid expression. Finally, inflammatory gene expression associated with NF-kappa-B (interleukin-6, cyclooxygenase-2, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1), which is upregulated in DOCA-salt rats, was significantly suppressed by fenofibrate. Activation of NF-kappa-B and expression of I-kappa-B-alpha in DOCA-salt rats were normalized by fenofibrate.ConclusionsA PPAR-alpha activator reduced myocardial fibrosis and prevented the development of diastolic dysfunction in DOCA-salt rats. The effects of a PPAR-alpha activator may be mediated partly by prevention of inflammatory mediators through the NF-kappa-B pathway. These results suggest that treatment with PPAR-alpha activators will improve diastolic dysfunction in hypertensive heart disease
    corecore