9 research outputs found

    Interplay between Single Resistance-Associated Mutations in the HIV-1 Protease and Viral Infectivity, Protease Activity, and Inhibitor Sensitivity

    Get PDF
    ABSTRACT Resistance-associated mutations in the HIV-1 protease modify viral fitness through changes in the catalytic activity and altered binding affinity for substrates and inhibitors. In this report, we examine the effects of 31 mutations at 26 amino acid positions in protease to determine their impact on infectivity and protease inhibitor sensitivity. We found that primary resistance mutations individually decrease fitness and generally increase sensitivity to protease inhibitors, indicating that reduced virion-associated protease activity reduces virion infectivity and the reduced level of per virion protease activity is then more easily titrated by a protease inhibitor. Conversely, mutations at more variable positions (compensatory mutations) confer low-level decreases in sensitivity to all protease inhibitors with little effect on infectivity. We found significant differences in the observed effect on infectivity with a pseudotype virus assay that requires the protease to cleave the cytoplasmic tail of the amphotropic murine leukemia virus (MuLV) Env protein. Additionally, we were able to mimic the fitness loss associated with resistance mutations by directly reducing the level of virion-associated protease activity. Virions containing 50% of a D25A mutant protease were 3- to 5-fold more sensitive to protease inhibitors. This level of reduction in protease activity also resulted in a 2-fold increase in sensitivity to nonnucleoside inhibitors of reverse transcriptase and a similar increase in sensitivity to zidovudine (AZT), indicating a pleiotropic effect associated with reduced protease activity. These results highlight the interplay between enzyme activity, viral fitness, and inhibitor mechanism and sensitivity in the closed system of the viral replication complex

    Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo

    Get PDF
    Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication

    Virologic Failure in First-Line Human Immunodeficiency Virus Therapy with a CCR5 Entry Inhibitor, Aplaviroc, plus a Fixed-Dose Combination of Lamivudine-Zidovudine: Nucleoside Reverse Transcriptase Inhibitor Resistance Regardless of Envelope Tropismâ–¿

    No full text
    The CCR102881 (ASCENT) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc plus a fixed-dose combination of lamivudine-zidovudine (Combivir) in drug-naïve human immunodeficiency virus type 1-infected subjects with only CCR5-tropic virus detected in plasma. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, eight subjects met protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at baseline and at the time of virologic failure. Molecular evolutionary analyses were also performed. The majority of the subjects with virologic failure (six of eight) acquired the lamivudine resistance-associated mutation M184V, and none had evidence of reduced susceptibility to aplaviroc at the time of virologic failure, even at the clonal level. Six subjects with virologic failure maintained CCR5 tropism, while two exhibited a change in population tropism readout to dual/mixed-tropic with R5X4-tropic clones detected prior to therapy. Two evolutionary patterns were observed: five subjects had no evidence of population turnover, while three subjects had multiple lines of evidence for env population turnover. The acquisition of the M184V mutation is the primary characteristic of virologic failure in first-line therapy with aplaviroc plus lamivudine-zidovudine, regardless of the envelope tropism

    Virologic Failure in Therapy-Naïve Subjects on Aplaviroc plus Lopinavir-Ritonavir: Detection of Aplaviroc Resistance Requires Clonal Analysis of Envelope▿

    No full text
    The CCR100136 (EPIC) study evaluated the antiviral activity of the novel CCR5 entry inhibitor aplaviroc in combination with lopinavir-ritonavir in drug-naïve human immunodeficiency virus type 1-infected subjects. Although the trial was stopped prematurely due to idiosyncratic hepatotoxicity, 11 subjects met the protocol-defined virologic failure criteria. Clonal analyses of the viral envelope tropism, aplaviroc susceptibility, and env sequencing were performed on plasma at day 1 and at the time of virologic failure. Molecular evolutionary analyses were also performed. Treatment-emergent resistance to aplaviroc or lopinavir-ritonavir was not observed at the population level. However, aplaviroc resistance was detected prior to therapy at both the clonal and population levels in one subject with virologic failure and in six subjects in a minority (<50%) of clones at day 1 or at the time of virologic failure. Reduced aplaviroc susceptibility manifested as a 50% inhibitory concentration curve shift and/or a plateau. Sequence changes in the clones with aplaviroc resistance were unique to each subject and scattered across the envelope coding region. Clones at day 1 and at the time of virologic failure were not phylogenetically distinct. Two subjects with virologic failure had a population tropism change from CCR5- to dual/mixed-tropic during treatment. Virologic failure during a regimen of aplaviroc and lopinavir-ritonavir may be associated with aplaviroc resistance, only at the clonal level, and/or, infrequently, tropism changes

    Abdominal Fat Is Associated With Lower Bone Formation and Inferior Bone Quality in Healthy Premenopausal Women: A Transiliac Bone Biopsy Study

    No full text
    CONTEXT: The conventional view that obesity is beneficial for bone strength has recently been challenged by studies that link obesity, particularly visceral obesity, to low bone mass and fractures. It is controversial whether effects of obesity on bone are mediated by increased bone resorption or decreased bone formation. OBJECTIVE: The objective of the study was to evaluate bone microarchitecture and remodeling in healthy premenopausal women of varying weights. DESIGN: We measured bone density and trunk fat by dual-energy x-ray absorptiometry in 40 women and by computed tomography in a subset. Bone microarchitecture, stiffness, remodeling, and marrow fat were assessed in labeled transiliac bone biopsies. RESULTS: Body mass index (BMI) ranged from 20.1 to 39.2 kg/m(2). Dual-energy x-ray absorptiometry-trunk fat was directly associated with BMI (r = 0.78, P < .001) and visceral fat by computed tomography (r = 0.79, P < .001). Compared with women in the lowest tertile of trunk fat, those in the highest tertile had inferior bone quality: lower trabecular bone volume (20.4 ± 5.8 vs 29.1 ± 6.1%; P = .001) and stiffness (433 ± 264 vs 782 ± 349 MPa; P = .01) and higher cortical porosity (8.8 ± 3.5 vs 6.3 ± 2.4%; P = .049). Bone formation rate (0.004 ± 0.002 vs 0.011 ± 0.008 mm(2)/mm · year; P = .006) was 64% lower in the highest tertile. Trunk fat was inversely associated with trabecular bone volume (r = −0.50; P < .01) and bone formation rate (r = −0.50; P < .001). The relationship between trunk fat and bone volume remained significant after controlling for age and BMI. CONCLUSIONS: At the tissue level, premenopausal women with more central adiposity had inferior bone quality and stiffness and markedly lower bone formation. Given the rising levels of obesity, these observations require further investigation
    corecore