2 research outputs found

    Construction of Methods for Determining the Contours of Objects on Tonal Aerospace Images Based on the Ant Algorithms

    Full text link
    A method has been proposed for determining contours of objects on tonal aerospace images based on ant algorithms. The method, in contrast to those already known, takes into consideration patterns in the image formation; the ant algorithm is used for determining the contours. Determining an object's contours in the image has been reduced to calculating the fitness function, the totality of agents' motion areas, and the pheromone concentration along agents' motion routes.We have processed a tonal image for determining the contours of objects using a method based on the ant algorithm. In order to reduce the number of "junk" objects, the main principles and stages of the method for multi-scale processing of aerospace images based on the ant algorithm have been outlined. Determining the contours on images with a different value of the scale factor is carried out applying a method based on the ant algorithm. In addition, we rescale images with a different scale factor value to the original size and calculate the image filter. The resulting image is a pixelwise product of the original image and the image filter.The multiscale processing of tonal aerospace images with different scale values has been performed using methods based on the ant algorithms. It was established that application of a multi-scale processing reduces the number of "junk" objects. At the same time, due to multi-scale processing, not the objects' contours are determined but the objects in full.We estimated errors of first and second kind in determining the contours of objects on tonal aerospace images based on the ant algorithms. It was established that using the constructed methods has made it possible to reduce the first and second kind errors in determining the contours on tonal aerospace images by the magnitude of 18–22 % on averag

    Development of Methods for Determining the Coordinates of Firing Positions of Roving Mortars by A Network of Counter-battery Radars

    Full text link
    The mathematical formulation of the problem of determining the coordinates of targets in the network of counter-battery radars is formulated. It has been established that the problem of estimating the coordinates of targets in the network of counter-battery radars for an excessive number of estimates of primary coordinates should be considered as a statistical problem. The method for determining the coordinates of the firing positions of roving mortars has been improved, in which, in contrast to the known ones, the coordinates of targets on the flight trajectory are coordinated with space and time and the information is processed by a network of counter-battery radars. The developed simulation mathematical model for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars. Simulation modeling of the method for determining the coordinates of the firing positions of roving mortars by a network of counter-battery radars has been carried out. It has been established that the use of a network of radars makes it possible to increase the accuracy of determining the coordinates of the firing means on average from 23 % to 71 %, depending on the number of counter-battery radars in the network. It has also been found that the appropriate number of counter-battery warfare radars in the network is three or four. A further increase in the number of counter-battery warfare radars in the network does not lead to a significant increase in the accuracy of determining the coordinates of artillery and mortar firing positions. In carrying out further research, it is necessary to develop a method for the spatial separation of elements of a group of targets and interfering objects by a network of counter-battery warfare radar
    corecore