28 research outputs found

    Functional Correction of Type VII Collagen Expression in Dystrophic Epidermolysis Bullosa

    Get PDF
    Functional defects in type VII collagen, caused by premature termination codons on both alleles of the COL7A1 gene, are responsible for the severe autosomal recessive types of the skin blistering disease, recessive dystrophic epidermolysis bullosa (RDEB). The full-length COL7A1 complementary DNA (cDNA) is about 9kb, a size that is hardly accommodated by therapeutically used retroviral vectors. Although there have been successful attempts to produce functional type VII collagen protein in model systems of RDEB, the risk of genetic rearrangements of the large repetitive cDNA sequence may hamper the clinical application of full-length COL7A1 cDNA in the human system. Therefore, we used trans-splicing to reduce the size of the COL7A1 transcript. Retroviral transduction of RDEB keratinocytes with a 3′ pre-trans-splicing molecule resulted in correction of full-length type VII collagen expression. Unlike parental RDEB keratinocytes, transduced cells displayed normal morphology and reduced invasive capacity. Moreover, transduced cells showed normal localization of type VII collagen at the basement membrane zone in skin equivalents, where it assembled into anchoring fibril-like structures. Thus, using trans-splicing we achieved correction of an RDEB phenotype in vitro, which marks an important step toward its application in gene therapy in vivo.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclu

    Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study

    Get PDF
    Background: Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods: Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subj

    Informed consent procedures in patients with an acute inability to provide informed consent

    Get PDF
    Purpose: Enrolling traumatic brain injury (TBI) patients with an inability to provide informed consent in research is challenging. Alternatives to patient consent are not sufficiently embedded in European and national legislation, which allows procedural variation and bias. We aimed to quantify variations in informed consent policy and practice. Methods: Variation was explored in the CENTER-TBI study. Policies were reported by using a questionnaire and national legislation. Data on used informed consent procedures were available for 4498 patients from 57 centres across 17 European countries. Results: Variation in the use of informed consent procedur

    Tracheal intubation in traumatic brain injury

    Get PDF
    Background: We aimed to study the associations between pre- and in-hospital tracheal intubation and outcomes in traumatic brain injury (TBI), and whether the association varied according to injury severity. Methods: Data from the international prospective pan-European cohort study, Collaborative European NeuroTrauma Effectiveness Research for TBI (CENTER-TBI), were used (n=4509). For prehospital intubation, we excluded self-presenters. For in-hospital intubation, patients whose tracheas were intubated on-scene were excluded. The association between intubation and outcome was analysed with ordinal regression with adjustment for the International Mission for Prognosis and Analysis of Clinical Trials in TBI variables and extracranial injury. We assessed whether the effect of intubation varied by injury severity by testing the added value of an interaction term with likelihood ratio tests. Results: In the prehospital analysis, 890/3736 (24%) patients had their tracheas intubated at scene. In the in-hospital analysis, 460/2930 (16%) patients had their tracheas intubated in the emergency department. There was no adjusted overall effect on functional outcome of prehospital intubation (odds ratio=1.01; 95% confidence interval, 0.79–1.28; P=0.96), and the adjusted overall effect of in-hospital intubation was not significant (odds ratio=0.86; 95% confidence interval, 0.65–1.13; P=0.28). However, prehospital intubation was associated with better functional outcome in patients with higher thorax and abdominal Abbreviated Injury Scale scores (P=0.009 and P=0.02, respectively), whereas in-hospital intubation was associated with better outcome in patients with lower Glasgow Coma Scale scores (P=0.01): in-hospital intubation was associated with better functional outcome in patients with Glasgow Coma Scale scores of 10 or lower. Conclusion: The benefits and harms of tracheal intubation should be carefully evaluated in patients with TBI to optimise benefit. This study suggests that extracranial injury should influence the decision in the prehospital setting, and level of consciousness in the in-hospital setting. Clinical trial registration: NCT02210221

    Organ-specific and memory Treg cells: specificity, development, function and maintenance

    No full text
    Foxp3+ regulatory T cells (Treg cells) are essential for establishing and maintaining self-tolerance, and also inhibit immune responses to innocuous environmental antigens. Imbalances and dysfunction in Treg cells lead to a variety of immune-mediated diseases, as deficits in Treg cell function contribute to the development autoimmune disease and pathological tissue damage, whereas overabundance of Treg cells can promote chronic infection and tumorigenesis. Recent studies have highlighted the fact that Treg cells themselves are a diverse collection of phenotypically and functionally specialized populations, with distinct developmental origins, antigen-specificities, tissue-tropisms, and homeostatic requirements. The signals directing the differentiation of these populations, their specificities and the mechanisms by which they combine to promote organ-specific and systemic tolerance, and how they embody the emerging property of regulatory memory are the focus of this review

    Transcriptomic Profiling of Human Effector and Regulatory T Cell Subsets Identifies Predictive Population Signatures.

    No full text
    After activation, CD4+ Th cells differentiate into functionally specialized populations that coordinate distinct immune responses and protect against different types of pathogens. In humans, these effector and memory Th cell subsets can be readily identified in peripheral blood based on their differential expression of chemokine receptors that govern their homeostatic and inflammatory trafficking. Foxp3+ regulatory T (Treg) cells can also be divided into subsets that phenotypically mirror each of these effector populations and share expression of key transcription factors and effector cytokines. In this study, we performed comprehensive transcriptional profiling of 11 phenotypically distinct Th and Treg cell subsets sorted from peripheral blood of healthy individuals. Despite their shared phenotypes, we found that mirror Th and Treg subsets were transcriptionally dissimilar and that Treg cell populations showed limited transcriptional diversity compared with Th cells. We identified core transcriptional signatures shared across all Th and Treg cell populations and unique signatures that define each of the Th or Treg populations. Finally, we applied these signatures to bulk Th and Treg RNA-sequencing data and found enrichment of specific Th and Treg cell populations in different human tissues. These results further define the molecular basis for the functional specialization and differentiation of Th and Treg cell populations and provide a new resource for examining Th and Treg specialization in RNA-sequencing data

    Cutting Edge: Self-Antigen Controls the Balance between Effector and Regulatory T Cells in Peripheral Tissues

    No full text
    Immune homeostasis in peripheral tissues is achieved by maintaining a balance between pathogenic effector T cells (Teff) and protective Foxp3(+) regulatory T cells (Treg). Using a mouse model of an inducible tissue-antigen we demonstrate that antigen (Ag) persistence is a major determinant of the relative frequencies of Teff and Treg cells. Encounter of transferred naïve CD4(+) T cells with transiently expressed tissue-Ag leads to generation of cytokine-producing Teff cells and peripheral Treg cells. Persistent expression of Ag, a mimic of self Ag, leads to functional inactivation and loss of the Teff cells with preservation of Treg in the target tissue. The inactivation of Teff cells by persistent Ag is associated with reduced ERK phosphorylation (pERK), whereas Treg cells show less reduction in pERK and are relatively resistant to ERK inhibition. Our studies reveal a crucial role for Ag in maintaining appropriate ratios of Ag-specific Teff to Treg cells in tissues
    corecore