271 research outputs found

    Understanding singularities in Cartan's and NSF geometric structures

    Get PDF
    In this work we establish a relationship between Cartan's geometric approach to third order ODEs and the 3-dim Null Surface Formulation (NSF). We then generalize both constructions to allow for caustics and singularities that necessarily arise in these formalisms.Comment: 22 pages, 2 figure

    Schwarzschild Tests of the Wahlquist-Estabrook-Buchman-Bardeen Tetrad Formulation for Numerical Relativity

    Full text link
    A first order symmetric hyperbolic tetrad formulation of the Einstein equations developed by Estabrook and Wahlquist and put into a form suitable for numerical relativity by Buchman and Bardeen (the WEBB formulation) is adapted to explicit spherical symmetry and tested for accuracy and stability in the evolution of spherically symmetric black holes (the Schwarzschild geometry). The lapse and shift which specify the evolution of the coordinates relative to the tetrad congruence are reset at frequent time intervals to keep the constant-time hypersurfaces nearly orthogonal to the tetrad congruence and the spatial coordinate satisfying a kind of minimal rate of strain condition. By arranging through initial conditions that the constant-time hypersurfaces are asymptotically hyperbolic, we simplify the boundary value problem and improve stability of the evolution. Results are obtained for both tetrad gauges (``Nester'' and ``Lorentz'') of the WEBB formalism using finite difference numerical methods. We are able to obtain stable unconstrained evolution with the Nester gauge for certain initial conditions, but not with the Lorentz gauge.Comment: (accepted by Phys. Rev. D) minor changes; typos correcte

    On free evolution of self gravitating, spherically symmetric waves

    Get PDF
    We perform a numerical free evolution of a selfgravitating, spherically symmetric scalar field satisfying the wave equation. The evolution equations can be written in a very simple form and are symmetric hyperbolic in Eddington-Finkelstein coordinates. The simplicity of the system allow to display and deal with the typical gauge instability present in these coordinates. The numerical evolution is performed with a standard method of lines fourth order in space and time. The time algorithm is Runge-Kutta while the space discrete derivative is symmetric (non-dissipative). The constraints are preserved under evolution (within numerical errors) and we are able to reproduce several known results.Comment: 15 pages, 15 figure

    Cosmological post-Newtonian expansions to arbitrary order

    Full text link
    We prove the existence of a large class of one parameter families of solutions to the Einstein-Euler equations that depend on the singular parameter \ep=v_T/c (0<\ep < \ep_0), where cc is the speed of light, and vTv_T is a typical speed of the gravitating fluid. These solutions are shown to exist on a common spacetime slab M\cong [0,T)\times \Tbb^3, and converge as \ep \searrow 0 to a solution of the cosmological Poisson-Euler equations of Newtonian gravity. Moreover, we establish that these solutions can be expanded in the parameter \ep to any specified order with expansion coefficients that satisfy \ep-independent (nonlocal) symmetric hyperbolic equations

    Initial data for gravity coupled to scalar, electromagnetic and Yang-Mills fields

    Get PDF
    We give ansatze for solving classically the initial value constraints of general relativity minimally coupled to a scalar field, electromagnetism or Yang-Mills theory. The results include both time-symmetric and asymmetric data. The time-asymmetric examples are used to test Penrose's cosmic censorship inequality. We find that the inequality can be violated if only the weak energy condition holds.Comment: 16 pages, RevTeX, references added, presentational changes, version to appear in Phys Rev.

    Symmetric hyperbolic system in the Ashtekar formulation

    Full text link
    We present a first-order symmetric hyperbolic system in the Ashtekar formulation of general relativity for vacuum spacetime. We add terms from constraint equations to the evolution equations with appropriate combinations, which is the same technique used by Iriondo, Leguizam\'on and Reula [Phys. Rev. Lett. 79, 4732 (1997)]. However our system is different from theirs in the points that we primarily use Hermiticity of a characteristic matrix of the system to characterize our system "symmetric", discuss the consistency of this system with reality condition, and show the characteristic speeds of the system.Comment: 4 pages, RevTeX, to appear in Phys. Rev. Lett., Comments added, refs update

    Adjusted ADM systems and their expected stability properties: constraint propagation analysis in Schwarzschild spacetime

    Get PDF
    In order to find a way to have a better formulation for numerical evolution of the Einstein equations, we study the propagation equations of the constraints based on the Arnowitt-Deser-Misner formulation. By adjusting constraint terms in the evolution equations, we try to construct an "asymptotically constrained system" which is expected to be robust against violation of the constraints, and to enable a long-term stable and accurate numerical simulation. We first provide useful expressions for analyzing constraint propagation in a general spacetime, then apply it to Schwarzschild spacetime. We search when and where the negative real or non-zero imaginary eigenvalues of the homogenized constraint propagation matrix appear, and how they depend on the choice of coordinate system and adjustments. Our analysis includes the proposal of Detweiler (1987), which is still the best one according to our conjecture but has a growing mode of error near the horizon. Some examples are snapshots of a maximally sliced Schwarzschild black hole. The predictions here may help the community to make further improvements.Comment: 23 pages, RevTeX4, many figures. Revised version. Added subtitle, reduced figures, rephrased introduction, and a native checked. :-

    Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations

    Full text link
    We present new many-parameter families of strongly and symmetric hyperbolic formulations of Einstein's equations that include quite general algebraic and live gauge conditions for the lapse. The first system that we present has 30 variables and incorporates an algebraic relationship between the lapse and the determinant of the three metric that generalizes the densitized lapse prescription. The second system has 34 variables and uses a family of live gauges that generalizes the Bona-Masso slicing conditions. These systems have free parameters even after imposing hyperbolicity and are expected to be useful in 3D numerical evolutions. We discuss under what conditions there are no superluminal characteristic speeds
    • …
    corecore