7 research outputs found
Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia)
We report on a novel arctic strain BM1 of a carotenogenic chlorophyte from a coastal habitat with harsh environmental conditions (wide variations in solar irradiance, temperature, salinity and nutrient availability) identified as Haematococcus pluvialis Flotow. Increased (25‰) salinity exerted no adverse effect on the growth of the green BM1 cells. Under stressful conditions (high light, nitrogen and phosphorus deprivation), green vegetative cells of H. pluvialis BM1 grown in BG11 medium formed non-motile palmelloid cells and, eventually, hematocysts capable of a massive accumulation of the keto-carotenoid astaxanthin with a high nutraceutical and therapeutic potential. Routinely, astaxanthin was accumulated at the level of 4% of the cell dry weight (DW), reaching, under prolonged stress, 5.5% DW. Astaxanthin was predominantly accumulated in the form of mono- and diesters of fatty acids from C16 and C18 families. The palmelloids and hematocysts were characterized by the formation of red-colored cytoplasmic lipid droplets, increasingly large in size and number. The lipid droplets tended to merge and occupied almost the entire volume of the cell at the advanced stages of stress-induced carotenogenesis. The potential application of the new strain for the production of astaxanthin is discussed in comparison with the H. pluvialis strains currently employed in microalgal biotechnology
Amiodarone induces cell wall channel formation in yeast Hansenula polymorpha
The yeast cell wall is constantly remodeled to enable cell growth and division. In this study, we describe a novel type of cell wall modification. We report that the drug amiodarone induces rapid channel formation within the cell wall of the yeast Hansenula polymorpha. Light microscopy shows that shortly after adding amiodarone, spherical structures, which can be stained with DNA binding dyes, form on the cell surface. Electron microphotographs show that amiodarone induces the formation of channels 50–80 nm in diameter in the cell wall that appear to be filled with intracellular material. Using fluorescent microscopy, we demonstrate MitoTracker-positive DNA-containing structures visibly extruded from the cells through these channels. We speculate that the observed channel formation acts to enable the secretion of mitochondrial material from the cell under stressful conditions, thus enabling adaptive changes to the extracellular environment
Phosphorus Feast and Famine in Cyanobacteria: Is Luxury Uptake of the Nutrient Just a Consequence of Acclimation to Its Shortage?
To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)—taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (Pi), including the kinetics of Pi uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the Pi uptake and polyphosphate formation. The first (fast) phase (1–2 h after Pi refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity Pi transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions
Phosphorus starvation and luxury uptake in green microalgae revisited
Phosphorus (P) is central to storing and transferring energy and information in living cells, including those of microalgae. Many microalgal species dwelling in low P environments are naturally equipped to take up and store P whenever it becomes available through a complex phenomenon known as “luxury P uptake.” Its research is required for better understanding of the nutrient geochemical cycles in aquatic environments but also for biotechnological applications such as sequestration of nutrients from wastewater and production of algal fertilizers. Here, we report on our recent insights into luxury P uptake and polyphosphate formation originating from physiological, ultrastructural, and transcriptomic evidence. The cultures pre-starved of P and re-fed with inorganic phosphate (Pi) exhibited a bi-phasic kinetics of Pi uptake comprising fast (1–2 h after re-feeding) and slow (1–3 d after re-feeding) phases. The rate of Pi uptake in the fast phase was ca. 10 times higher than in the slow phase with an opposite trend shown for the cell division rate. The transient peak of polyphosphate accumulation was determined 2–4 h after re-feeding and coincided with the period of slow cell division and fast Pi uptake. In this phase, the microalgal cells reached the highest P content (up to 5% of dry cell weight). The P re-feeding also reversed the characteristic changes in cell lipids induced by P starvation, namely increase in the major membrane glycolipid (DGDG/MGDG) ratio and betaine lipids. These changes were reversed upon Pi re-feeding of the starved culture. Electron microscopy revealed the ordered organization of vacuolar polyphosphate indicative of the possible involvement of an enzyme (complex) in their synthesis. A candidate gene encoding a protein similar to the vacuolar transport chaperone (VTC) protein, featuring an expression pattern corresponding to polyphosphate accumulation, was revealed. Implications of the findings for efficient biocapture of phosphorus are discussed