1 research outputs found

    High Rate of Hydrogen Incorporation in Vertically Aligned Carbon Nanotubes during Initial Stages of Growth Quantified by Elastic Recoil Detection

    No full text
    We quantified the amount of hydrogen in as-grown vertically aligned multiwall CNTs at different stages of growth using elastic recoil detection analysis (ERDA). We suggest that hydrogen is associated with atomic defects and/or amorphous carbon impurities formed at earlier deposition stages. We found that the highest amount of hydrogen (2.3 wt %) was incorporated during the initial growth stage (15–20 s). Our results show a decrease of hydrogen content with increasing deposition time and/or with decreasing growth rate, which points to dynamical self-annealing of hydrogen-saturated defects. Consequently, the decrease of hydrogen-related defects leads to a higher quality of MWCNTs, which can be easily detected by ERDA. This research provides new insight into the nanotube growth mechanism and provides a new characterization approach for quantifying hydrogen-saturated atomic defects in MWCNTs
    corecore