2,923 research outputs found

    Displacement energy of unit disk cotangent bundles

    Full text link
    We give an upper bound of a Hamiltonian displacement energy of a unit disk cotangent bundle DMD^*M in a cotangent bundle TMT^*M, when the base manifold MM is an open Riemannian manifold. Our main result is that the displacement energy is not greater than Cr(M)C r(M), where r(M)r(M) is the inner radius of MM, and CC is a dimensional constant. As an immediate application, we study symplectic embedding problems of unit disk cotangent bundles. Moreover, combined with results in symplectic geometry, our main result shows the existence of short periodic billiard trajectories and short geodesic loops.Comment: Title slightly changed. Close to the version published online in Math Zei

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Precision Measurements of d(d,p)t and d(d,n)^3He Total Cross Sections at Big-Bang Nucleosynthesis Energies

    Full text link
    Recent Wilkinson Microwave Anisotropy Probe (WMAP) measurements have determined the baryon density of the Universe Ωb\Omega_b with a precision of about 4%. With Ωb\Omega_b tightly constrained, comparisons of Big Bang Nucleosynthesis (BBN) abundance predictions to primordial abundance observations can be made and used to test BBN models and/or to further constrain abundances of isotopes with weak observational limits. To push the limits and improve constraints on BBN models, uncertainties in key nuclear reaction rates must be minimized. To this end, we made new precise measurements of the d(d,p)t and d(d,n)^3He total cross sections at lab energies from 110 keV to 650 keV. A complete fit was performed in energy and angle to both angular distribution and normalization data for both reactions simultaneously. By including parameters for experimental variables in the fit, error correlations between detectors, reactions, and reaction energies were accurately tabulated by computational methods. With uncertainties around 2% +/- 1% scale error, these new measurements significantly improve on the existing data set. At relevant temperatures, using the data of the present work, both reaction rates are found to be about 7% higher than those in the widely used Nuclear Astrophysics Compilation of Reaction Rates (NACRE). These data will thus lead not only to reduced uncertainties, but also to modifications in the BBN abundance predictions.Comment: 15 pages, 11 figures, minor editorial change

    Analytic Study for the String Theory Landscapes via Matrix Models

    Full text link
    We demonstrate a first-principle analysis of the string theory landscapes in the framework of non-critical string/matrix models. In particular, we discuss non-perturbative instability, decay rate and the true vacuum of perturbative string theories. As a simple example, we argue that the perturbative string vacuum of pure gravity is stable; but that of Yang-Lee edge singularity is inescapably a false vacuum. Surprisingly, most of perturbative minimal string vacua are unstable, and their true vacuum mostly does not suffer from non-perturbative ambiguity. Importantly, we observe that the instability of these tachyon-less closed string theories is caused by ghost D-instantons (or ghost ZZ-branes), the existence of which is determined only by non-perturbative completion of string theory.Comment: v1: 5 pages, 2 figures; v2: references and footnote added; v3: 7 pages, 4 figures, organization changed, explanations expanded, references added, reconstruction program from arbitrary spectral curves shown explicitl

    Theory of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} Cross-Whisker Josephson Junctions

    Full text link
    Takano {\it et al.} [Phys. Rev. B {\bf 65}, 140513 (2002) and unpublished] made Josephson junctions from single crystal whiskers of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} crossed an angle ϕ0\phi_0 about the cc axis. From the mesa structures that formed at the cross-whisker interface, they inferred a critical current density Jc(ϕ0)J_c(\phi_0). Like the single crystal results of Li {\it et al.} [Phys. Rev. Lett. {\bf 83}, 4160 (1999)], we show that the whisker data are unlikely to result from a predominantly d-wave order parameter. However, unlike the single crystals, these results, if correct, require the whisker c-axis transport to be coherent.Comment: 5 pages, 4 figures, accepted for publication in Physical Review

    Resonance phenomena in the annular array of underdamped Josephson junctions

    Full text link
    Appearance and origin of resonance phenomena have been studied in the annular system of underdamped Josephson junctions. If no fluxon is trapped in the system, dynamics is governed by the motion of fluxon-antifluxon pairs, while if trapped fluxons are present, they can move solely but also simultaneously with the pairs. Locking between the rotating excitations (fluxons and antifluxons) and the Josephson frequency leads to the appearance of zero field steps in the current-voltage characteristics, which can further exhibit branching due to resonance between the rotating excitations and plasma oscillations in their tale. The number of zero field steps and their branching are strongly determined by the total number of excitations present in the system. High resolution analysis further reveals not only some interesting properties of zero field steps, but also shows that the current-voltage characteristics is determined not only by the number, but also by the type of excitations, i.e., whether the dynamics is governed only by the motion of fluxon-antifluxon pairs or the trapped fluxons, or they move simultaneously in the system
    corecore