5 research outputs found

    Design and evaluation of a lidar-based feedforward controller for the INNWIND.EU 10 MW wind turbine

    Get PDF
    For the development of the next generation of multi megawatt wind turbines, advanced control concepts are one of the major tasks. Reduction of fatigue and extreme loading could help to improve the overall design process and make plants more cost effective. This work deals with the application of the promising methodology of feedforward control using nacelle-based lidar sensor measurements on a 10 MW wind turbine concept. After lidar data processing has been described, the feedforward controller is designed such that disturbances from the changing wind speed to the generator speed are compensated by adding an update to the collective pitch rate signal of the normal feedback controller. The evaluation of the feedforward controller is done in two steps: Firstly, simulations using perfect lidar data measurements are applied to check the robustness of the controller against model uncertainties. After that, simulations with realistic lidar measurements are investigated. To improve control performance, the scanning configuration of the used lidar system is optimized. Over all it can be shown that lidar-assisted control leads to significant load reductions, especially in the full load region of the 10 MW turbine

    Expert Elicitation on Wind Farm Control

    No full text
    Wind farm control is an active and growing field of research in which the control actions of individual turbines in a farm are coordinated, accounting for inter-turbine aerodynamic interaction, to improve the overall performance of the wind farm and to reduce costs. The primary objectives of wind farm control include increasing power production, reducing turbine loads, and providing electricity grid support services. Additional objectives include improving reliability or reducing external impacts to the environment and communities. In 2019, a European research project (FarmConners) was started with the main goal of providing an overview of the state-of-the-art in wind farm control, identifying consensus of research findings, data sets, and best practices, providing a summary of the main research challenges, and establishing a roadmap on how to address these challenges. Complementary to the FarmConners project, an IEA Wind Topical Expert Meeting (TEM) and two rounds of surveys among experts were performed. From these events we can clearly identify an interest in more public validation campaigns. Additionally, a deeper understanding of the mechanical loads and the uncertainties concerning the effectiveness of wind farm control are considered two major researc

    Future emerging technologies in the wind power sector: A European perspective

    No full text
    This paper represents an expert view from Europe of future emerging technologies within the wind energy sector considering their potential, challenges, applications and technology readiness and how they might evolve in the coming years. These technologies were identified as originating primarily from the academic sector, some start-up companies and a few larger industrial entities. The following areas were considered: airborne wind energy, offshore floating concepts, smart rotors, wind-induced energy harvesting devices, blade tip-mounted rotors, unconventional power transmission systems, multi-rotor turbines, alternative support structures, modular high voltage direct current generators, innovative blade manufacturing techniques, diffuser-augmented turbines and small turbine technologies. The future role of advanced multiscale modelling and data availability is also considered. This expert review has highlighted that more research will be required to realise many of these emerging technologies. However, there is a need to identify synergies between fundamental and industrial research by correctly targeting public and private funding in these emerging technology areas as industrial development may outpace more fundamental research faster than anticipated

    Launch of the FarmConners Wind Farm Control benchmark for code comparison

    Get PDF
    Careful validation of the modelling and control actions is of vital importance to build confidence in the value of coordinated wind farm control (WFC). The efficiency of flow models applied to WFC should be evaluated to provide reliable assessment of the performance of WFC. In order to achieve that, FarmConners launches a common benchmark for code comparison to demonstrate the potential benefits of WFC, such as increased power production and mitigation of loads. The benchmark builds on available data sets from previous and ongoing campaigns: synthetic data from high-fidelity simulations, measurements from wind tunnel experiments, and field data from a real wind farm. The participating WFC models are first to be calibrated or trained using normal operation periods. For the blind test, both the axial induction and wake steering control approaches are included in the dataset and to be evaluated through the designed test cases. Three main test cases are specified, addressing the impact of WFC on single full wake, single partial wake, and multiple wake. The WFC model outcomes will be compared during the blind test phase, through power gain and wake loss reduction as well as alleviation of wake-added turbulence intensity and structural loads. The probabilistic validation will be based on the median and quartiles of the observations and WFC model predictions. Every benchmark participant will be involved in the final publication, where the comparison of different tools will be performed using the defined test cases. Instructions on how to participate are also provided on farmconners.readthedocs.io.Team Jan-Willem van Wingerde
    corecore