18 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Vancomycin population pharmacokinetics in critically ill adults during sustained low-efficiency dialysis

    No full text
    Background: Sustained low-efficiency dialysis (SLED) is a hybrid form of dialysis that is increasingly used in critically ill patients with kidney injury and hemodynamic instability. Antimicrobial dosing for patients receiving SLED is informed by pharmacokinetic studies that describe the drug clearance. Studies available to assist in the dosing of vancomycin in the context of SLED are lacking. Objective: The objective of this prospective observational study was to describe the population pharmacokinetics of vancomycin in critically ill patients receiving SLED, and use simulation studies to propose dosing strategies. Methods: Serial serum samples were obtained from 31 critically ill patients prescribed vancomycin while receiving SLED. Vancomycin concentrations were quantified in plasma using a validated liquid chromatography mass spectrometry/mass spectrometry method. A population pharmacokinetic model was developed, and Monte Carlo simulation was used to determine the probability of target attainment at different doses. Results: From a total of 335 serum samples from 31 patients receiving 52 sessions of SLED therapy, a two-compartment linear model with zero-order input was developed. The mean (standard deviation) clearance of vancomycin on and off SLED was 5.97 (4.04) and 2.40 (1.46)\ua0L/h, respectively. Using pharmacodynamic targets for efficacy (area under the concentration–time curve from time zero to 24\ua0h [AUC]/minimum inhibitory concentration [MIC] ≥ 400) and safety (AUC ≥ 700), a loading dose of 2400\ua0mg followed by daily doses of 1600\ua0mg is recommended. Subsequent dosing should be informed by therapeutic drug monitoring of vancomycin levels. Conclusions: In critically ill patients receiving SLED, vancomycin clearance is highly variable with a narrow therapeutic window. Empiric dosing is proposed but subsequent dosing should be guided by drug levels

    Piperacillin population pharmacokinetics in critically ill adults during sustained low-efficiency dialysis

    No full text
    Background: Sustained low-efficiency dialysis (SLED), is increasingly being used in intensive care units (ICUs) but studies informing drug dosing for such patients is lacking. Objective: To describe the population pharmacokinetics (PKs) of piperacillin/tazobactam in critically ill adults receiving SLED and to provide dosing recommendations. Methods: This prospective population PK study was conducted in adult ICU patients prescribed piperacillin/tazobactam while receiving SLED; 321 blood samples were obtained from 34 participants during and between approximately 50 SLED treatments for quantification of piperacillin and tazobactam concentrations in plasma. A population PK model was developed. Monte Carlo simulation was used to determine the probability of target attainment and pathogen-specific fractional target attainment at different doses. Results: From a 2-compartment linear model with zero-order input, the mean (SD) clearance of piperacillin on SLED and off SLED were 4.81 (8.48) and 1.42 (1.54) L/h, respectively. Tazobactam concentrations were not sufficient for analysis. For the target of 50% fT>MIC (unbound concentrations of drug are above the minimum inhibitory concentration for >50% of the dosing interval), 3-g of piperacillin infused over 0.5 hours every 8 hours was appropriate for susceptible organisms with MIC ≤16 mg/L. For life-threatening infections where the target of 100% fT>MIC is preferred, a 9-g dose administered as a continuous infusion every 24 hours was appropriate for susceptible organisms with MIC ≤32 mg/L. Conclusions and Relevance: In critically ill patients receiving SLED, piperacillin doses need to be guided by the frequency of SLED treatments and susceptibility of the known or suspected pathogen

    Vascular progenitor recruitment in critically ill patients with acute kidney injury

    No full text
    Purpose: Endothelial-like vascular progenitor cells (VPCs) are blood-derived angiogenic precursors that can facilitate vascular repair. The mobilization of peripheral blood VPCs and their role in recovery were investigated in patients with acute kidney injury (AKI) in the intensive care unit (ICU) setting. Methods: Blood samples were drawn on days 0, 3, 7 and 14 in 38 patients admitted to ICU: 30 with AKI and in eight controls with normal renal function. Circulating VPC levels were quantified by the early outgrowth cell cluster-forming assay and/or by flow cytometry. Results: AKI patients (16 males, mean age 62.4) were classified as Risk (R, n=5), Injury (I, n=11) and Failure (F, n=14) according to the RIFLE criteria. VPC clusters increased over time following the diagnosis of AKI (p < 0.01 for day 0 vs. day 14) while VPC clusters were higher at enrollment in control patients and decreased over time (p=0.02). Greater mobilization of VPCs occurred in patients with more severe AKI at enrollment (I and F categories compared with R, p=0.05). A trend towards greater mobilization of VPC clusters was observed in patients with improved renal function (p=0.07). Conclusion: Time-dependent increases in circulating VPCs occur in critically ill patients with established AKI. Greater mobilization of VPCs may be associated with recovery of renal function, suggesting a potential role for VPCs in repair after kidney injury

    Supplementary Material, Supplementary_Appendix_A – Piperacillin Population Pharmacokinetics in Critically Ill Adults During Sustained Low-Efficiency Dialysis

    No full text
    <p>Supplementary Material, Supplementary_Appendix_A for Piperacillin Population Pharmacokinetics in Critically Ill Adults During Sustained Low-Efficiency Dialysis by Salmaan Kanji, Jason A. Roberts, Jiao Xie, Abdulaziz Alobaid, Sheryl Zelenitsky, Swapnil Hiremath, Guijun Zhang, Irene Watpool, Rebecca Porteous and Rakesh Patel in Annals of Pharmacotherapy</p

    The evolution of mean arterial pressure in critically ill patients on vasopressors before and during a trial comparing a specific mean arterial pressure target to usual care

    No full text
    Abstract Background In randomized clinical controlled trials, the choice of usual care as the comparator may be associated with better clinician uptake of the study protocol and lead to more generalizable results. However, if care processes evolve to resemble the intervention during the course of a trial, differences between the intervention group and usual care control group may narrow. We evaluated the effect on mean arterial pressure of an unblinded trial comparing a lower mean arterial pressure target to reduce vasopressor exposure, vs. a clinician-selected mean arterial pressure target, in critically ill patients at least 65 years old. Methods For this multicenter observational study using data collected both prospectively and retrospectively, patients were recruited from five of the seven trial sites. We compared the mean arterial pressure of patients receiving vasopressors, who met or would have met trial eligibility criteria, from two periods: [1] at least 1 month before the trial started, and [2] during the trial period and randomized to usual care, or not enrolled in the trial. Results We included 200 patients treated before and 229 after trial initiation. There were no differences in age (mean 74.5 vs. 75.2 years; p = 0.28), baseline Acute Physiology and Chronic Health Evaluation II score (median 26 vs. 26; p = 0.47) or history of chronic hypertension (n = 126 [63.0%] vs. n = 153 [66.8%]; p = 0.41). Mean of the mean arterial pressure was similar between the two periods (72.5 vs. 72.4 mmHg; p = 0.76). Conclusions The initiation of a trial of a prescribed lower mean arterial pressure target, compared to a usual clinician-selected target, was not associated with a change in mean arterial pressure, reflecting stability in the net effect of usual clinician practices over time. Comparing prior and concurrent control groups may alleviate concerns regarding drift in usual practices over the course of a trial or permit quantification of any change

    Co-enrollment of critically ill patients into multiple studies: patterns, predictors and consequences

    No full text
    Abstract Introduction Research on co-enrollment practices and their impact are limited in the ICU setting. The objectives of this study were: 1) to describe patterns and predictors of co-enrollment of patients in a thromboprophylaxis trial, and 2) to examine the consequences of co-enrollment on clinical and trial outcomes. Methods In an observational analysis of an international thromboprophylaxis trial in 67 ICUs, we examined the co-enrollment of critically ill medical-surgical patients into more than one study, and examined the clinical and trial outcomes among co-enrolled and non-co-enrolled patients. Results Among 3,746 patients enrolled in PROTECT (Prophylaxis for ThromboEmbolism in Critical Care Trial), 713 (19.0%) were co-enrolled in at least one other study (53.6% in a randomized trial, 37.0% in an observational study and 9.4% in both). Six factors independently associated with co-enrollment (all P 10 years' experience compared to persons with none), center size (all ORs > 10 for ICUs with > 15 beds), affiliation with trials groups (OR 5.59, 3.49 to 8.95), and main trial rather than pilot phase (all ORs > 8 for recruitment year beyond the pilot). Co-enrollment did not influence clinical or trial outcomes or risk of adverse events. Conclusions Co-enrollment was strongly associated with features of the patients, research personnel, setting and study. Co-enrollment had no impact on trial results, and appeared safe, acceptable and feasible. Transparent reporting, scholarly discourse, ethical analysis and further research are needed on the complex topic of co-enrollment during critical illness

    Co-enrollment of critically ill patients into multiple studies: Patterns, predictors and consequences

    Get PDF
    INTRODUCTION: Research on co-enrollment practices and their impact are limited in the ICU setting. The objectives of this study were: 1) to describe patterns and predictors of co-enrollment of patients in a thromboprophylaxis trial, and 2) to examine the consequences of co-enrollment on clinical and trial outcomes. METHODS: In an observational analysis of an international thromboprophylaxis trial in 67 ICUs, we examined the co-enrollment of critically ill medical-surgical patients into more than one study, and examined the clinical and trial outcomes among co-enrolled and non-co-enrolled patients. RESULTS: Among 3,746 patients enrolled in PROTECT (Prophylaxis for ThromboEmbolism in Critical Care Trial), 713 (19.0%) were co-enrolled in at least one other study (53.6% in a randomized trial, 37.0% in an observational study and 9.4% in both). Six factors independently associated with co-enrollment (all P < 0.001) were illness severity (odds ratio (OR) 1.35, 95% confidence interval (CI) 1.19 to 1.53 for each 10-point Acute Physiology and Chronic Health Evaluation (APACHE) II score increase), substitute decision-makers providing consent, rather than patients (OR 3.31, 2.03 to 5.41), experience of persons inviting consent (OR 2.67, 1.74 to 4.11 for persons with > 10 years' experience compared to persons with none), center size (all ORs > 10 for ICUs with > 15 beds), affiliation with trials groups (OR 5.59, 3.49 to 8.95), and main trial rather than pilot phase (all ORs > 8 for recruitment year beyond the pilot). Co-enrollment did not influence clinical or trial outcomes or risk of adverse events. CONCLUSIONS: Co-enrollment was strongly associated with features of the patients, research personnel, setting and study. Co-enrollment had no impact on trial results, and appeared safe, acceptable and feasible. Transparent reporting, scholarly discourse, ethical analysis and further research are needed on the complex topic of co-enrollment during critical illness
    corecore