7 research outputs found

    Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Get PDF
    Background: The molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells. Methods: PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies. Results: KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model. Conclusions: Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer

    Development and characterization of a novel C-terminal inhibitor of Hsp90 in androgen dependent and independent prostate cancer cells

    Get PDF
    Background: The molecular chaperone, heat shock protein 90 (Hsp90) has been shown to be overexpressed in a number of cancers, including prostate cancer, making it an important target for drug discovery. Unfortunately, results with N-terminal inhibitors from initial clinical trials have been disappointing, as toxicity and resistance resulting from induction of the heat shock response (HSR) has led to both scheduling and administration concerns. Therefore, Hsp90 inhibitors that do not induce the heat shock response represent a promising new direction for the treatment of prostate cancer. Herein, the development of a C-terminal Hsp90 inhibitor, KU174, is described, which demonstrates anti-cancer activity in prostate cancer cells in the absence of a HSR and describe a novel approach to characterize Hsp90 inhibition in cancer cells.Methods: PC3-MM2 and LNCaP-LN3 cells were used in both direct and indirect in vitro Hsp90 inhibition assays (DARTS, Surface Plasmon Resonance, co-immunoprecipitation, luciferase, Western blot, anti-proliferative, cytotoxicity and size exclusion chromatography) to characterize the effects of KU174 in prostate cancer cells. Pilot in vivo efficacy studies were also conducted with KU174 in PC3-MM2 xenograft studies.Results: KU174 exhibits robust anti-proliferative and cytotoxic activity along with client protein degradation and disruption of Hsp90 native complexes without induction of a HSR. Furthermore, KU174 demonstrates direct binding to the Hsp90 protein and Hsp90 complexes in cancer cells. In addition, in pilot in-vivo proof-of-concept studies KU174 demonstrates efficacy at 75 mg/kg in a PC3-MM2 rat tumor model.Conclusions: Overall, these findings suggest C-terminal Hsp90 inhibitors have potential as therapeutic agents for the treatment of prostate cancer.Peer reviewedBiochemistry and Molecular Biolog

    Expression of the C-C Chemokine Receptor 7 Mediates Metastasis of Breast Cancer to the Lymph Nodes in Mice1

    Get PDF
    C-C chemokine receptor 7 (CCR7) controls lymphocyte migration to secondary lymphoid organs. Although CCR7 has been implicated in targeting the metastasis of cancers to lymph nodes, the role of CCR7 in the metastasis of breast cancer, along with the molecular mechanisms that are controlled by CCR7 that target breast cancer metastasis to the lymph nodes, has yet to be defined. To explore the cellular and molecular mechanisms of breast cancer cell migration to the lymph nodes, we used the mouse MMTV-PyVmT mammary tumor cells (PyVmT) transfected with CCR7 and the human CCR7-expressing MCF10A and MCF7 mammary cell lines. We found that the CCR7 ligands CCL19 and CCL21, controlled cell migration using the β1-integrin heterodimeric adhesion molecules. To define a physiological significance for CCR7 regulation of migration, we used the FVB syngeneic mouse model of metastatic breast cancer. When CCR7-negative PyVmT cells transfected with control vector were orthotopically transferred to the mammary fat pad of FVB mice, tumors metastasized to the lungs (10/10 mice) but not to the lymph nodes (0/10). In contrast, CCR7-expressing PyVmT (CCR7-PyVmT) cells metastasized to the lymph nodes (6/10 mice) and had a reduced rate of metastasis to the lungs (4/10 mice). CCR7-PyVmT tumors grew significantly faster than PyVmT tumors, which mirrored the growth in vitro, of CCR7-PyVmT, MCF7, and MCF10A mammospheres. This model provides tools for studying lymph node metastasis, CCR7 regulation of tumor cell growth, and targeting of breast cancer cells to the lymph nodes
    corecore