21 research outputs found

    Social cognition in people with schizophrenia: A cluster-analytic approach

    Get PDF
    Background The study aimed to subtype patients with schizophrenia on the basis of social cognition (SC), and to identify cut-offs that best discriminate among subtypes in 809 out-patients recruited in the context of the Italian Network for Research on Psychoses. Method A two-step cluster analysis of The Awareness of Social Inference Test (TASIT), the Facial Emotion Identification Test and Mayer-Salovey-Caruso Emotional Intelligence Test scores was performed. Classification and regression tree analysis was used to identify the cut-offs of variables that best discriminated among clusters. Results We identified three clusters, characterized by unimpaired (42%), impaired (50.4%) and very impaired (7.5%) SC. Three theory-of-mind domains were more important for the cluster definition as compared with emotion perception and emotional intelligence. Patients more able to understand simple sarcasm (14 for TASIT-SS) were very likely to belong to the unimpaired SC cluster. Compared with patients in the impaired SC cluster, those in the very impaired SC cluster performed significantly worse in lie scenes (TASIT-LI <10), but not in simple sarcasm. Moreover, functioning, neurocognition, disorganization and SC had a linear relationship across the three clusters, while positive symptoms were significantly lower in patients with unimpaired SC as compared with patients with impaired and very impaired SC. On the other hand, negative symptoms were highest in patients with impaired levels of SC. Conclusions If replicated, the identification of such subtypes in clinical practice may help in tailoring rehabilitation efforts to the person's strengths to gain more benefit to the person

    Social cognition in people with schizophrenia: A cluster-analytic approach

    Get PDF
    Background The study aimed to subtype patients with schizophrenia on the basis of social cognition (SC), and to identify cut-offs that best discriminate among subtypes in 809 out-patients recruited in the context of the Italian Network for Research on Psychoses. Method A two-step cluster analysis of The Awareness of Social Inference Test (TASIT), the Facial Emotion Identification Test and Mayer-Salovey-Caruso Emotional Intelligence Test scores was performed. Classification and regression tree analysis was used to identify the cut-offs of variables that best discriminated among clusters. Results We identified three clusters, characterized by unimpaired (42%), impaired (50.4%) and very impaired (7.5%) SC. Three theory-of-mind domains were more important for the cluster definition as compared with emotion perception and emotional intelligence. Patients more able to understand simple sarcasm (14 for TASIT-SS) were very likely to belong to the unimpaired SC cluster. Compared with patients in the impaired SC cluster, those in the very impaired SC cluster performed significantly worse in lie scenes (TASIT-LI <10), but not in simple sarcasm. Moreover, functioning, neurocognition, disorganization and SC had a linear relationship across the three clusters, while positive symptoms were significantly lower in patients with unimpaired SC as compared with patients with impaired and very impaired SC. On the other hand, negative symptoms were highest in patients with impaired levels of SC. Conclusions If replicated, the identification of such subtypes in clinical practice may help in tailoring rehabilitation efforts to the person's strengths to gain more benefit to the person

    Myelin Disturbances Produced by Sub-Toxic Concentration of Heavy Metals: The Role of Oligodendrocyte Dysfunction

    No full text
    Evidence has been accumulated demonstrating that heavy metals may accumulate in various organs, leading to tissue damage and toxic effects in mammals. In particular, the Central Nervous System (CNS) seems to be particularly vulnerable to cumulative concentrations of heavy metals, though the pathophysiological mechanisms is still to be clarified. In particular, the potential role of oligodendrocyte dysfunction and myelin production after exposure to subtoxic concentration I confirmed. It is ok of heavy metals is to be better assessed. Here we investigated on the effect of sub-toxic concentration of several essential (Cu2 +, Cr3 +, Ni2 +, Co2+) and non-essential (Pb2 +, Cd2+, Al3+) heavy metals on human oligodendrocyte MO3.13 and human neuronal SHSY5Y cell lines (grown individually or in co-culture). MO3.13 cells are an immortal human–human hybrid cell line with the phenotypic characteristics of primary oligodendrocytes but following the differentiation assume the morphological and biochemical features of mature oligodendrocytes. For this reason, we decided to use differentiated MO3.13 cell line. In particular, exposure of both cell lines to heavy metals produced a reduced cell viability of co-cultured cell lines compared to cells grown separately. This effect was more pronounced in neurons that were more sensitive to metals than oligodendrocytes when the cells were grown in co-culture. On the other hand, a significant reduction of lipid component in cells occurred after their exposure to heavy metals, an effect accompanied by substantial reduction of the main protein that makes up myelin (MBP) in co-cultured cells. Finally, the effect of heavy metals in oligodendrocytes were associated to imbalanced intracellular calcium ion concentration as measured through the fluorescent Rhod-2 probe, thus confirming that heavy metals, even used at subtoxic concentrations, lead to dysfunctional oligodendrocytes. In conclusion, our data show, for the first time, that sub-toxic concentrations of several heavy metals lead to dysfunctional oligodendrocytes, an effect highlighted when these cells are co-cultured with neurons. The pathophysiological mechanism(s) underlying this effect is to be better clarified. However, imbalanced intracellular calcium ion regulation, altered lipid formation and, finally, imbalanced myelin formation seem to play a major role in early stages of heavy metal-related oligodendrocyte dysfunction

    In Vitro Evaluation of Ferutinin Rich-<i>Ferula communis</i> L., ssp. <i>glauca</i>, Root Extract on Doxorubicin-Induced Cardiotoxicity: Antioxidant Properties and Cell Cycle Modulation

    No full text
    The clinical use of anthracycline Doxorubicin as an antineoplastic drug in cancer therapy is limited by cardiotoxic effects that can lead to congestive heart failure. Recent studies have shown several promising activities of different species of the genus Ferula belonging to the Apiaceae Family. Ferula communis is the main source of Ferutinin—a bioactive compound isolated from many species of Ferula—studied both in vitro and in vivo because of their different effects, such as estrogenic, antioxidant, anti-inflammatory, and also antiproliferative and cytotoxic activity, performed in a dose-dependent and cell-dependent way. However, the potential protective role of Ferutinin in myocardium impairment, caused by chemotherapeutic drugs, still represents an unexplored field. The aim of this study was to test the effects of Ferutinin rich-Ferula communis L. root extract (FcFE) at different concentrations on H9C2 cells. Moreover, we evaluated its antioxidant properties in cardiomyocytes in order to explore new potential therapeutic activities never examined before in other experimental works. FcFE, at a concentration of 0.25 ”M, in the H9C2 line, significantly reduced the ROS production induced by H2O2 (50 ”M and 250 ”M) and traced the cell mortality of the H9C2 co-treated with Ferutinin 0.25 ”M and Doxorubicin (0.5 ”M and 1 ”M) to control levels. These results showed that FcFE could protect against Doxorubicin-induced cardiotoxicity. Further molecular characterization of this natural compound may open the way for testing FcFE at low concentrations in vivo and in clinical studies as an adjuvant in cancer therapy in association with anthracyclines to prevent side effects on heart cells
    corecore