5 research outputs found

    Mortality from lung cancer in workers exposed to sulfur dioxide in the pulp and paper industry.

    Get PDF
    Our objective in this study was to evaluate the mortality of workers exposed to sulfur dioxide in the pulp and paper industry. The cohort included 57,613 workers employed for at least 1 year in the pulp and paper industry in 12 countries. We assessed exposure to SO(2) at the level of mill and department, using industrial hygiene measurement data and information from company questionnaires; 40,704 workers were classified as exposed to SO(2). We conducted a standardized mortality ratio (SMR) analysis based on age-specific and calendar period-specific national mortality rates. We also conducted a Poisson regression analysis to determine the dose-response relations between SO(2) exposure and cancer mortality risks and to explore the effect of potential confounding factors. The SMR analysis showed a moderate deficit of all causes of death [SMR = 0.89; 95% confidence interval (CI), 0.87-0.96] among exposed workers. Lung cancer mortality was marginally increased among exposed workers (SMR = 1.08; 95% CI, 0.98-1.18). After adjustment for occupational coexposures, the lung cancer risk was increased compared with unexposed workers (rate ratio = 1.49; 95% CI, 1.14-1.96). There was a suggestion of a positive relationship between weighted cumulative SO(2) exposure and lung cancer mortality (p-value of test for linear trend = 0.009 among all exposed workers; p = 0.3 among workers with high exposure). Neither duration of exposure nor time since first exposure was associated with lung cancer mortality. Mortality from non-Hodgkin lymphoma and from leukemia was increased among workers with high SO(2) exposure; a dose-response relationship with cumulative SO(2) exposure was suggested for non-Hodgkin lymphoma. For the other causes of death, there was no evidence of increased mortality associated with exposure to SO(2). Although residual confounding may have occurred, our results suggest that occupational exposure to SO(2) in the pulp and paper industry may be associated with an increased risk of lung cancer

    Airborne asbestos fibers detection in microscope images using re-initialization free active contours.

    No full text
    Breathing in asbestos fibers can lead to a number of diseases, the fibers become trapped in the lung and cannot be removed by either coughing or the person's immune system. Atmospheric concentrations of carcinogenic asbestos fibers, have traditionally been measured visually using phase contrast microscopy. However, because this measurement method requires great skill, and has poor reproducibility and objectivity, the development of automatic counting methods has been long anticipated. In this paper we proposed an automated fibers detection method based on a variational formulation of geometric active contours that forces the level set function to be close to signed distance function and therefore completely eliminates the need of the costly re-initialization procedure. The method was evaluated using a ground truth of 29 manually annotated images. The results were encouraging for the further development of the proposed method
    corecore