28 research outputs found

    The Influence of pH and Temperature on the Stability of N

    Get PDF
    The influence of pH and temperature on the stability of N-[(piperidine)methylene]daunorubicin hydrochloride (PPD) was investigated. Degradation was studied using an HPLC method. Specific acid-base catalysis of PPD involves hydrolysis of protonated molecules of PPD catalyzed by hydrogen ions and spontaneous hydrolysis under the influence of water zwitterions, unprotonated molecules, and monoanions of PPD. The thermodynamic parameters of these reactions, energy, enthalpy, and entropy, were calculated. Also, the stability of daunorubicin and its new amidine derivatives (piperidine, morpholine, pyrrolidine, and hexahydroazepin-1-yl) in aqueous solutions was compared and discussed

    Cytotoxicity and inhibitory properties against topoisomerase II of doxorubicin and its formamidine derivatives

    No full text
    This work was undertaken to compare cytotoxicity, DNA damaging properties and effect on DNA cleavage by topoisomerase II of the anthracycline drug doxorubicin (DOX) and its two derivatives with a formamidino group containing a cyclic amine moiety such as morpholine (DOXM) or hexamethyleneimine (DOXH). The tetrazolium dye colorimetric assay was used to determine the cytotoxic activity of anthracyclines toward L1210 leukemia cells. DNA damage was measured by alkaline elution technique. The effect of anthracyclines on DNA cleavage was studied in a cell-free system containing supercoiled pBR322 DNA and purified human topoisomerase II. The cytotoxicity data and the results of studies on the mechanism of DNA break formation by anthracyclines at the cellular level and in the cell-free system showed that the presence of the formamidino group in the doxorubicin molecule reduced its ability to stimulate DNA cleavage by DNA topoisomerase II. Conclusion: DNA topoisomerase II is not a primary cellular target for DOXM or DOXH. An advantageous feature of formamidinoanthracyclines is their mechanism of cytotoxic action which is not related to the inhibition of DNA topoisomerase II. Therefore this class of anthracyclines seems to be a good source for selection of an anticancer drug directed toward cancer cells with the developed multidrug resistance attributed to the presence of altered DNA topoisomerase II

    The ability of new formamidine sugar-modified derivatives of daunorubicin to stimulate free radical formation in three enzymatic systems: NADH dehydrogenase, NADPH cytochrome P450 reductase and xanthine oxidase

    No full text
    Some sterically hindered N-substituted derivatives of daunorubicin are known to be poor substrates for NADH dehydrogenase, NADPH cytochrome P450 reductase and xanthine oxidase. In consequence, poor oxygen radical generation by these compounds is observed. In this study we examined a new family of sugar-N-substituted derivatives of daunorubicin bearing a bulky substituent introduced on the nitrogen atom through the amidine spacer. These compounds were found to be very active in radical formation catalyzed by all three studied enzymes. Thus, the introduction of a heterocyclic ring, even if it is bulky but flexible, on the nitrogen atom of daunosamine moiety through the one-atom spacer (amidine group), does not induce the steric hindrance effect on the interaction of daunorubicin derivatives with these flavoprotein enzymes
    corecore