5 research outputs found

    l-Ergothioneine Protects Skin Cells against UV-Induced Damage—A Preliminary Study

    No full text
    Many changes related to aging at the cellular level may be due to the physiological condition of mitochondria. One of the most common types of damage of mtDNA is the so-called “common deletion” referring to a deletion of 4977 base pairs. In the skin cells this phenomenon probably is caused by oxidative damage of mtDNA induced by UV. The present study was aimed at evaluating the effect of the antioxidant l-ergothioneine on UV-induced damage in skin cells. The effect of l-ergothioneine on the reduced glutathione level was studied. The presence of the “common deletion” in human fibroblasts irradiated with UVA and treated with l-ergothioneine was evaluated by a polymerase chain reaction. We have demonstrated that l-ergothioneine enhanced the level of reduced glutathione and protected cells from the induction of a photoaging-associated mtDNA “common deletion”. In view of our results, l-ergothioneine could be an effective skin care and anti-photoaging ingredient

    A study of the activity and effectiveness of recombinant fibroblast growth factor (Q40P/S47I/H93G rFGF-1) in anti-aging treatment

    No full text
    Introduction : Fibroblast growth factor 1 (FGF-1) is a powerful mitogen involved in the stimulation of DNA synthesis and the proliferation of a wide variety of cell types. Fibroblast growth factor 1 was genetically modified to improve its thermal stability and resistance to protease degradation without losing its biological activity. Aim : To study the impact of Q40P/S47I/H93G rFGF-1 on skin cells, its penetration through the skin and the evaluation of the rFGF-1-cosmetic product properties. Material and methods : In vitro studies included the examination of primary fibroblast and keratinocyte viability after the incubation with rFGF-1. The penetration abilities of rFGF-1 in various formulations and carrier systems were examined ex vivo by the Raman spectroscopy. In vivo studies – HF Ultrasound and 3D Imaging System – were used to evaluate the anti-aging properties of creams containing rFGF-1. Results : In vitro studies demonstrated that rFGF-1 strongly enhanced the viability of the treated cells. The Raman Spectroscopy analysis indicated that rFGF-1 encapsulated in lipid spheres penetrate through the stratum corneum to the depth of 60 μm, and added to the o/w formulation – could penetrate to a depth of 90 μm. The results obtained from Primos revealed the reduction of the volume and the depth of the wrinkles. Changes in the skin structure in the analyzed areas were evaluated by HF Ultrasonography. Conclusions : Recombinant FGF-1 strongly stimulated fibroblast and keratinocyte proliferation. However, the transition of this protein through the SC required an appropriate carrier system – lipid spheres. All tests – in vitro , ex vivo and in vivo – have proved that rFGF-1 is a substance with a potentially wide spectrum of use

    New lupeol esters as active substances in the treatment of skin damage.

    No full text
    The purpose of the research was to obtain new derivatives of natural triterpene lupeol and to evaluate their potential as active substances in the treatment of skin damage. Four new lupeol esters (propionate, succinate, isonicotinate and acetylsalicylate) and lupeol acetate were obtained using an eco-friendly synthesis method. In the esterification process, the commonly used hazardous reagents in this type of synthesis were replaced by safe ones. This unconventional, eco-friendly, method is particularly important because the compounds obtained are potentially active substances in skin care formulations. Even trace amounts of hazardous reagents can have a toxic effect on damaged or irritated tissues. The molecular structure of the esters were confirmed by 1H NMR, 13C NMR and IR spectroscopy methods. Their crystal structures were determined using XRD method. To complete the analysis of their characteristics, physicochemical properties (melting point, lipophilicity, water solubility) and biological activity of the lupeol derivatives were studied. Results of an irritant potential test, carried out on Reconstructed Human Epidermis (RHE), confirmed that the synthesized lupeol derivatives are not cytotoxic and they stimulate a process of human cell proliferation. The safety of use for tested compounds was determined in a cell viability test (cytotoxicity detection kit based on the measurement of lactate dehydrogenase activity) for keratinocytes and fibroblasts. The results obtained showed that the modification of lupeol structure improve its bioavailability and activity. All of the esters penetrate the stratum corneum and the upper layers of the dermis better than the maternal lupeol. Lupeol isonicotinate, acetate and propionate were the most effective compounds in a stimulation of the human skin cell proliferation process. This combination resulted in an increase in the concentration of cells of more than 30% in comparison to control samples. The results indicate that the chemical modification of lupeol allows to obtain promising active substances for treatment of skin damage, including thermal, chemical and radiation burns
    corecore