5 research outputs found

    Molecular Iodine Has Extrathyroidal Effects as an Antioxidant, Differentiator, and Immunomodulator

    No full text
    Most investigations of iodine metabolism in humans and animals have focused on its role in thyroid function. However, considerable evidence indicates that iodine could also be implicated in the physiopathology of other organs. We review the literature that shows that molecular iodine (I2) exerts multiple and complex actions on the organs that capture it, not including its effects as part of thyroid hormones. This chemical form of iodine is internalized by a facilitated diffusion system that is evolutionary conserved, and its effects appear to be mediated by a variety of mechanisms and pathways. As an oxidized component, it directly neutralizes free radicals, induces the expression of type II antioxidant enzymes, or inactivates proinflammatory pathways. In neoplastic cells, I2 generates iodolipids with nuclear actions that include the activation of apoptotic pathways and the inhibition of markers related to stem cell maintenance, chemoresistance, and survival. Recently, I2 has been postulated as an immune modulator that depending on the cellular context, can function as an inhibitor or activator of immune responses. We propose that the intake of molecular iodine is increased in adults to at least 1 mg/day in specific pathologies to obtain the potential extrathyroid benefits described in this review

    Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice

    No full text
    Lung cancer has the highest mortality among all types of cancer; during its development, cells can acquire neural and endocrine properties that affect tumor progression by releasing several factors, some acting as immunomodulators. Neuroendocrine phenotype correlates with invasiveness, metastasis, and low survival rates. This work evaluated the effect of neuroendocrine differentiation of adenocarcinoma on the mouse immune system. A549 cells were treated with FSK (forskolin) and IBMX (3-Isobutyl-1-methylxanthine) for 96 h to induce neuroendocrine differentiation (NED). Systemic effects were assessed by determining changes in circulating cytokines and immune cells of BALB/c mice immunized with PBS, undifferentiated A549 cells, or neuroendocrine A549NED cells. A549 cells increased circulating monocytes, while CD4+CD8− and CD4+CD8+ T cells increased in mice immunized with neuroendocrine cells. IL-2 and IL-10 increased in mice that received untreated A549 cells, suggesting that the immune system mounts a regulated response against adenocarcinoma, which did not occur with A549NED cells. Cocultures demonstrated the cytotoxic capacity of PBMCs when confronted with A549 cells, while in the presence of neuroendocrine cells they not only were unable to show cytolytic activity, but also lost viability. Neuroendocrine differentiation seems to mount less of an immune response when injected in mice, which may contribute to the poor prognosis of cancer patients affected by this pathology

    Molecular iodine exerts antineoplastic effects by diminishing proliferation and invasive potential and activating the immune response in mammary cancer xenografts

    No full text
    Abstract Background The immune system is a crucial component in cancer progression or regression. Molecular iodine (I2) exerts significant antineoplastic effects, acting as a differentiation inductor and immune modulator, but its effects in antitumor immune response are not elucidated. Methods The present work analyzed the effect of I2 in human breast cancer cell lines with low (MCF-7) and high (MDA-MB231) metastatic potential under both in vitro (cell proliferation and invasion assay) and in vivo (xenografts of athymic nude mice) conditions. Results In vitro analysis showed that the 200 μM I2 supplement decreases the proliferation rate in both cell lines and diminishes the epithelial-mesenchymal transition (EMT) profile and the invasive capacity in MDA-MB231. In immunosuppressed mice, the I2 supplement impairs implantation (incidence), tumoral growth, and proliferation of both types of cells. Xenografts of the animals treated with I2 decrease the expression of invasion markers like CD44, vimentin, urokinase plasminogen activator and its receptor, and vascular endothelial growth factor; and increase peroxisome proliferator-activated receptor gamma. Moreover, in mice with xenografts, the I2 supplement increases the circulating level of leukocytes and the number of intratumoral infiltrating lymphocytes, some of them activated as CD8+, suggesting the activation of antitumor immune responses. Conclusions I2 decreases the invasive potential of a triple negative basal cancer cell line, and under in vivo conditions the oral supplement of this halogen activates the antitumor immune response, preventing progression of xenografts from laminal and basal mammary cancer cells. These effects allow us to propose iodine supplementation as a possible adjuvant in breast cancer therapy

    Effect of A549 neuroendocrine differentiation on cytotoxic immune response

    No full text
    The present study was designed to determine the effects of factors secreted by the lung adenocarcinoma cell line with the neuroendocrine phenotype, A549NED, on cytotoxic T lymphocytes (CTLs) activity in vitro. A perspective that integrates the nervous, endocrine and immune system in cancer research is essential to understand the complexity of dynamic interactions in tumours. Extensive clinical research suggests that neuroendocrine differentiation (NED) is correlated with worse patient outcomes; however, little is known regarding the effects of neuroendocrine factors on the communication between the immune system and neoplastic cells. The human lung cancer cell line A549 was induced to NED (A549NED) using cAMP-elevating agents. The A549NED cells showed changes in cell morphology, an inhibition of proliferation, an overexpression of chromogranin and a differential pattern of biogenic amine production (decreased dopamine and increased serotonin [5-HT] levels). Using co-cultures to determine the cytolytic CTLs activity on target cells, we showed that the acquisition of NED inhibits the decrease in the viability of the target cells and release of fluorescence. Additionally, the conditioned medium of A549NED and 5-HT considerably decreased the viability and proliferation of the Jurkat cells after 24 h. Thus, our study successfully generated a neuroendocrine phenotype from the A549 cell line. In co-cultures with CTLs, the pattern of secretion by A549NED impaired the proliferation and cytotoxic activity of CTLs, which might be partly explained by the increased release of 5-HT
    corecore