3 research outputs found

    The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway

    No full text
    International audienceBiofilm is the predominant type of microbial development in natural environments, and potentially represents a major form of resistance or source of recurrence during host infection. Although a large number of studies have focussed on the genetics of bacterial biofilm formation, very little is known about the genes involved in this type of growth in fungi. A genetic screen for Candida glabrata Biofilm mutants was performed using a 96-well plate model of biofilm formation. Study of the isolated mutant strains allowed the identification of four genes involved in biofilm formation (RIF1, SIR4, EPA6 and YAK1). Epa6p is a newly identified adhesin required for biofilm formation in this pathogenic yeast. EPA6 and its close paralogue EPA7 are located in subtelomeric regions and their transcription is regulated by Sir4p and Rif1p, two proteins involved in subtelomeric silencing. Biofilm growth conditions induce the transcription of EPA6 and EPA7: this is dependent on the presence of an intact subtelomeric silencing machinery and is independent of the Mpk1p signalling pathway. Finally, the kinase Yak1p is required for expression of both adhesin genes and acts through a subtelomeric silencing machinery-dependent pathway

    Amino Acid Signaling in Saccharomyces cerevisiae: a Permease- Like Sensor of External Amino Acids and F-Box Protein Grr1p Are Required for Transcriptional Induction of the AGP1 Gene, Which Encodes a Broad-Specificity Amino Acid Permease

    Get PDF
    International audienceThe SSY1 gene of Saccharomyces cerevisiae encodes a member of a large family of amino acid permeases. Compared to the 17 other proteins of this family, however, Ssy1p displays unusual structural features reminiscent of those distinguishing the Snf3p and Rgt2p glucose sensors from the other proteins of the sugar transporter family. We show here that SSY1 is required for transcriptional induction, in response to multiple amino acids, of the AGP1 gene encoding a low-affinity, broad-specificity amino acid permease. Total nonin-duction of the AGP1 gene in the ssy1 mutant is not due to impaired incorporation of inducing amino acids. Conversely, AGP1 is strongly induced by tryptophan in a mutant strain largely deficient in tryptophan uptake, but it remains unexpressed in a mutant that accumulates high levels of tryptophan endogenously. Induction of AGP1 requires Uga35p(Dal81p/DurLp), a transcription factor of the Cys 6-Zn 2 family previously shown to participate in several nitrogen induction pathways. Induction of AGP1 by amino acids also requires Grr1p, the F-box protein of the SCF Grr1 ubiquitin-protein ligase complex also required for transduction of the glucose signal generated by the Snf3p and Rgt2p glucose sensors. Systematic analysis of amino acid permease genes showed that Ssy1p is involved in transcriptional induction of at least five genes in addition to AGP1. Our results show that the amino acid permease homologue Ssy1p is a sensor of external amino acids, coupling availability of amino acids to transcriptional events. The essential role of Grr1p in this amino acid signaling pathway lends further support to the hypothesis that this protein participates in integrating nutrient availability with the cell cycle

    The SUN41 and SUN42 genes are essential for cell separation in Candida albicans

    No full text
    International audienceCompletion of the yeast cell cycle involves extensive remodelling of the cell wall upon separation of mother and daughter cells. We have studied two members of the ascomycete-specific SUN gene family in Candida albicans. Inactivation of SUN41 yields defects in cell separation and hyphal elongation while inactivation of SUN42 results in minor phenotypic alterations. Simultaneous inactivation of SUN41 and SUN42 is synthetically lethal due to lysis of mother cells after septation. Electronic microscopy reveals cell wall defects mainly localized in the region surrounding the septa. This phenotype is osmoremediable and the conditional double mutants show increased sensitivity to cell wall or cell membrane perturbing agents. The essential function shared by Sun41p and Sun42p is conserved among yeasts because UTH1, a Saccharomyces cerevisiae SUN gene, suppresses the lethality of SUN41 and SUN42 conditional mutants. Investigation of functional genomic data obtained in S. cerevisiae reveals links between members of the SUN gene family and the RAM pathway regulating cell wall-degrading enzymes specifically involved during cell separation. Thus, the main function of ascomycetous Sun proteins appears linked to cell wall remodelling, with a probable role in counter-balancing cell wall degradation to avoid cell lysis upon cell separatio
    corecore