712 research outputs found

    Digital mediation from discrete model to archaeological model: the Janus Arch

    Get PDF
    Trabajo presentado a la 38th Annual Conference on Computer Applications and Quantitative Methods in Archaeology (CAA), celebrada en Granada (España) en abril de 2010.Survey operations and the representation of acquired data should today be considered as consolidated. New acquisition methods such as point clouds obtained using 3D laser scanners are also part of today’s scenario. The scope of this paper is to propose a protocol of operations based on extensive previous experience and work to acquire and elaborate data obtained using complex 3D survey. This protocol focuses on illustrating the methods used to turn a numerical model into a system of two-dimensional and three-dimensional models that can help to understand the object in question. The study method is based on joint practical work by architects and archaeologists. The final objective is to create a layout that can satisfy the needs of scholars and researchers working in different disciplinary fields. The case study in this paper is the Arch of Janus in Rome near the Forum Boarium. The paper will illustrate the entire acquisition process and method used to transform the acquired data after the creation of a model. The entire operation was developed in close collaboration between the RADAAr Dept., University of Rome “Sapienza,” Italy and the Istituto de Arqueologia (CSIC, Junta de Extremadura, Consorcio de Mérida), Spain.Peer Reviewe

    Metagenomic Analysis of Bacterial Community Structure and Dynamics of a Digestate and a More Stabilized Digestate-Derived Compost from Agricultural Waste

    Get PDF
    Recycling of different products and waste materials plays a crucial role in circular economy, where the anaerobic digestion (AD) constitutes an important pillar since it reuses nutrients in the form of organic fertilizers. Knowledge about the digestate and compost microbial community structure and its variations over time is important. The aim of the current study was to investigate the microbiome of a slurry cow digestate produced on a farm (ADG) and of a more stabilized digestate-derived compost (DdC) in order to ascertain their potential uses as organic amendments in agriculture. The results from this study, based on a partial fragment of 16S bacterial rRNA NGS sequencing, showed that there is a greater microbial diversity in the DdC originated from agricultural waste compared to the ADG. Overall, the existence of a higher microbial diversity in the DdC was confirmed by an elevated number (1115) of OTUs identified, compared with the ADG (494 OTUs identified). In the DdC, 74 bacterial orders and 125 families were identified, whereas 27 bacterial orders and 54 families were identified in the ADG. Shannon diversity and Chao1 richness indexes were higher in DdC samples compared to ADG ones (Shannon: 3.014 and 1.573, Chao1: 68 and 24.75; p< 0.001 in both cases). A possible association between the microbiome composition at different stages of composting process and the role that these microorganisms may have on the quality of the compost-like substrate and its future uses is also discussed

    Menadione-induced oxidative stress re-shapes the oxylipin profile of Aspergillus flavus and its lifestyle

    Get PDF
    Aspergillus flavus is an efficient producer of mycotoxins, particularly aflatoxin B1, probably the most hepatocarcinogenic naturally-occurring compound. Although the inducing agents of toxin synthesis are not unanimously identified, there is evidence that oxidative stress is one of the main actors in play. In our study, we use menadione, a quinone extensively implemented in studies on ROS response in animal cells, for causing stress to A. flavus. For uncovering the molecular determinants that drive A. flavus in challenging oxidative stress conditions, we have evaluated a wide spectrum of several different parameters, ranging from metabolic (ROS and oxylipin profile) to transcriptional analysis (RNA-seq). There emerges a scenario in which A. flavus activates several metabolic processes under oxidative stress conditions for limiting the ROS-associated detrimental effects, as well as for triggering adaptive and escape strategies

    Pomegranate: Postharvest Fungal Diseases and Control

    Get PDF
    Due to well-known nutraceutical properties, pomegranate (Punica granatum L.) cultivation is recently increasing in various areas of the world including Italy. Fungal diseases are the major causes of postharvest yield and economic losses. Most of the fungi infect pomegranates in the field during the blooming stage remaining latent until fruit ripening, others infect fruit during harvest and postharvest handling through rind injuries. Main postharvest fungal diseases of pomegranates are gray and blue molds caused by Botrytis spp. and Penicillium spp., respectively, black heart and black spot due to Alternaria spp., anthracnose related to species ascribable to Colletotrichum genus, and Coniella rot, due to Coniella granati. Few fungicides are allowed for pre- and postharvest treatments, making it extremely difficult to control fungal infections. In this scenario, especially in organic fruit production, alternative control means may be a desirable solution to reduce pomegranate losses during the production chain. This chapter focuses on the most important postharvest diseases of pomegranates and possible strategies and means to reduce spoilage

    Organic and Inorganic Salts as Postharvest Alternative Control Means of Citrus

    Get PDF
    Several postharvest disease control means alternative to conventional chemical fungicides, such as organic and inorganic salts, will be highlighted in the proposed chapter. In particular, it will comprehensively cover different aspects of the use of salts against postharvest Penicillium decay of citrus. It will be an essential resource for the graduate and postgraduate students, researchers, professionals, supply chain players, citrus industries, and retailers. Organic and inorganic salts have a broad spectrum of activity against a wide range of fungi. In addition, they are easy to apply, inexpensive, safe for humans and the environment, and suitable for commercial postharvest handling practices. Different application strategies of salts, before and after harvest, and combined application (with wax, natural compounds, and fungicides, etc.) will be also discussed. The present chapter attempts to highlight how the use of organic and inorganic salts as alternative postharvest disease management technologies has developed from the laboratory to the market

    Efficacy and Comparison of Different Strategies for Selenium Biofortification of Tomatoes

    Get PDF
    At appropriate concentrations, selenium (Se) is beneficial for humans. Tomato appears to be one of the best commodities for producing Se-biofortified fruit for dietary supplementation. To assess the efficacy of different enrichment protocols, a total of four on-plant and off-plant trials were conducted. Hydroponically grown tomato plants were sprayed with: (i) chemically synthesized Se nanoparticles (SeNPs) at 0, 1, and 1.5 mg Se L−1 at blooming; (ii) sodium selenate (Na2SeO4) or SeNPs solution at 0, 5, and 10 mg Se L−1 when the fruit entered the immature green stage. With regard to the off-plant trials, harvested mature green fruit were immersed in Na2SeO4 solution: (iii) at 0, 5, 10, and 20 mg Se L−1 for 15 s under a vacuum; (iv) at 0, 40, and 80 mg Se L−1 for 1 h. Spraying Na2SeO4 induced higher Se accumulation in plant tissue than SeNPs: both protocols were effective in enriching tomatoes. Postharvest Se enrichment via vacuum infiltration caused textural damage, whereas passive immersion in solution induced fruit Se accumulation without causing any damage. SeNPs appear to be quantitatively less effective than Na2SeO4, but might be environmentally safer. Elemental Se carried by NPs may be more easily incorporated into organic forms, which are more bioavailable for humans. Passive immersion may represent an alternative Se-enrichment strategy, allowing for the biofortification of harvested tomato fruit directly, with lower risks of environmental pollution

    Physico-Chemical Characterization and Biological Activities of a Digestate and a More Stabilized Digestate-Derived Compost from Agro-Waste

    Get PDF
    The excessive use of agricultural soils and the reduction in their organic matter, following circular economy and environmental sustainability concepts, determined a strong attention in considering composting as a preferred method for municipalities and industries to recycle organic by-products. Microorganisms degrade organic matter for producing CO2, water and energy, originating stable humus named compost. The current study analyzed the chemical composition of a cow slurry on-farm digestate and a more stabilized digestate-derived compost (DdC), along with their phytotoxic, genotoxic and antifungal activities. The chemical analysis showed that digestate cannot be an ideal amendment due to some non-acceptable characteristics. Biological assays showed that the digestate had phytotoxicity on the tested plants, whereas DdC did not induce a phytotoxic effect in both plants at the lowest dilution; hence, the latter was considered in subsequent analyses. The digestate and DdC induced significant antifungal activity against some tested fungi. DdC did not show genotoxic effect on Vicia faba using a micronuclei test. Soil treated with DdC (5 and 10%) induced damping-off suppression caused by Fusarium solani in tomato plants. The eco-physiological data indicated that DdC at 5–10% could increase the growth of tomato plants. In conclusion, DdC is eligible as a soil amendment and to strengthen the natural soil suppressiveness against F. solani

    Burnout in cardiac anesthesiologists. results from a national survey in italy

    Get PDF
    Objective: There is increasing burnout incidence among medical disciplines, and physicians working in emergency settings seem at higher risk. Cardiac anesthesiology is a stressful anesthesiology subspecialty dealing with high-risk patients. The authors hypothesized a high risk of burnout in cardiac anesthesiologists. Design: National survey conducted on burnout Setting: Italian cardiac centers. Participants: Cardiac anesthesiologists. Interventions: The authors administered via email an anonymous questionnaire divided into 3 parts. The first 2 parts evaluated workload and private life. The third part consisted of the Maslach Burnout Inventory test with its 3 constituents: high emotional exhaustion, high depersonalization, and low personal accomplishment. Measurements and Main Results: The authors measured the prevalence and risk of burnout through the Maslach Burnout Inventory questionnaire and analyzed factors influencing burnout. Among 670 contacts from 71 centers, 382 cardiac anesthesiologists completed the survey (57%). The authors found the following mean Maslach Burnout Inventory values: 14.5 ± 9.7 (emotional exhaustion), 9.1 ± 7.1 (depersonalization), and 33.7 ± 8.9 (personal accomplishment). A rate of 34%, 54%, and 66% of respondents scored in “high” or “moderate-high” risk of burnout (emotional exhaustion, depersonalization, and personal accomplishment, respectively). The authors found that, if offered to change subspecialty, 76% of respondents would prefer to remain in cardiac anesthesiology. This preference and parenthood were the only 2 investigated factors with a protective effect against all components of burnout. Significantly lower burnout scores were found in more experienced anesthesiologists. Conclusion: A relatively high incidence of burnout was found in cardiac anesthesiologists, especially regarding high depersonalization and low personal accomplishment. Nonetheless, most of the respondents would choose to remain in cardiac anesthesiology

    Immunohistochemical localization of histidine-rich glycoprotein in human skeletal muscle: preferential distribution of the protein at the sarcomeric I-band

    Get PDF
    Histidine-rich glycoprotein (HRG) is a relatively abundant plasma protein that is synthesized by parenchymal liver cells. Using Western blot analysis and immunoperoxidase techniques, we have previously shown the presence of HRG in human skeletal muscle. This paper reports the results of immunofluorescence experiments carried out on sections of human normal skeletal muscle biopsies to investigate the subcellular localization of HRG. The HRG localization was also compared with that of skeletal muscle AMP deaminase (AMPD1), since we have previously described an association of the enzyme with the protein. The obtained results give evidence for a preferential localization of HRG at the I-band level, where it shows the same distribution of actin and where AMPD1 is present in major concentration
    corecore