43 research outputs found

    Non-coding variability at the APOE locus contributes to the Alzheimer’s risk

    Get PDF
    Alzheimer’s disease (AD) is a leading cause of mortality in the elderly. While the coding change of APOE-ε4 is a key risk factor for late-onset AD and has been believed to be the only risk factor in the APOE locus, it does not fully explain the risk effect conferred by the locus. Here, we report the identification of AD causal variants in PVRL2 and APOC1 regions in proximity to APOE and define common risk haplotypes independent of APOE-ε4 coding change. These risk haplotypes are associated with changes of AD-related endophenotypes including cognitive performance, and altered expression of APOE and its nearby genes in the human brain and blood. High-throughput genome-wide chromosome conformation capture analysis further supports the roles of these risk haplotypes in modulating chromatin states and gene expression in the brain. Our findings provide compelling evidence for additional risk factors in the APOE locus that contribute to AD pathogenesis

    An \u3cem\u3eIL1RL1\u3c/em\u3e genetic variant lowers soluble ST2 levels and the risk effects of \u3cem\u3eAPOE\u3c/em\u3e-ε4 in female patients with Alzheimer’s disease

    Get PDF
    Changes in the levels of circulating proteins are associated with Alzheimer’s disease (AD), whereas their pathogenic roles in AD are unclear. Here, we identified soluble ST2 (sST2), a decoy receptor of interleukin-33–ST2 signaling, as a new disease-causing factor in AD. Increased circulating sST2 level is associated with more severe pathological changes in female individuals with AD. Genome-wide association analysis and CRISPR–Cas9 genome editing identified rs1921622, a genetic variant in an enhancer element of IL1RL1, which downregulates gene and protein levels of sST2. Mendelian randomization analysis using genetic variants, including rs1921622, demonstrated that decreased sST2 levels lower AD risk and related endophenotypes in females carrying the Apolipoprotein E (APOE)-ε4 genotype; the association is stronger in Chinese than in European-descent populations. Human and mouse transcriptome and immunohistochemical studies showed that rs1921622/sST2 regulates amyloid-beta (Aβ) pathology through the modulation of microglial activation and Aβ clearance. These findings demonstrate how sST2 level is modulated by a genetic variation and plays a disease-causing role in females with AD

    New Secoiridoid Glucosides from Ligustrum lucidum Induce ERK and CREB Phosphorylation in Cultured Cortical Neurons

    No full text
    Two new secoiridoid glucosides, namely iso-oleonuezhenide (1) and methyloleoside 7-ethyl ester (2), along with five known ones, oleonuezhenide (3), nuezhenide (4), oleuropein (5), G13 (6), and jaspolyside methyl ester (7), were isolated from the fruits of Ligustrum lucidum. Their structures were assigned based on H-1-NMR, C-13-NMR, and 2D-NMR analyses, in combination with HR-MS experiments and the comparison with literature data of related compounds, as well as on chemical experiments. We have examined the ability of these compounds to activate ERK and CREB in cultured cortical neurons. Our studies demonstrate that compound 1 induces ERK and CREB phosphorylation in primary cortical neurons in a dose- and temporal-dependent manner, suggesting its bioactivity on neurons

    Design, synthesis and evaluation of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors

    No full text
    Four series of novel heterodimers comprised of donepezil and huperzine A (HupA) fragments were designed, synthesized, and evaluated in search of potent acetylcholinesterase (AChE) inhibitors as potential therapeutic treatment for Alzheimer's disease. Heterodimers comprised of dimethoxyindanone (from donepezil), hupyridone (from HupA), and connected with a multimethylene linker, were identified as potent and selective inhibitors of AChE. Diastereomeric heterodimers (RS,S)-17b (with a tetramethylene linker) exhibited the highest potency of inhibition towards AChE with an IC50 value of 9 nM and no detectable inhibitory effect on butyrylcholinesterase at 1 mM. (C) 2012 Elsevier Ltd. All rights reserved

    Dammarane saponins from Gynostemma pentaphyllum

    No full text
    Dammarane-type saponins (1-7), together with five known compounds, were isolated from the aerial parts of Gynostemma pentaphyllum. Compounds 1-4,6 and 7 induced the phosphorylation of ERK protein in primary rat cortical neurons, which indicates their potential neuroactivity. On the other hand, no induction of ERK phosphorylation was observed for HEK293 cells following treatment with saponins 1, 3, 4 and 7. (C) 2010 Elsevier Ltd. All rights reserved
    corecore