21 research outputs found

    Impact of Nitrogen Fertilization and Cropping System on Carbon Sequestration in Midwestern Mollisols

    Get PDF
    Growing interest in the potential for agricultural soils to provide a sink for atmospheric C has prompted studies of effects of management on soil organic carbon (SOC) sequestration. We analyzed the impact on SOC of four N fertilization rates (0–270 kg N ha−1) and four cropping systems: continuous corn (CC) (Zea mays L.); corn–soybean [Glycine max (L.) Merr.] (CS); corn–corn–oat–alfalfa (oat, Avena sativa L.; alfalfa, Medicago sativa L.) (CCOA), and corn–oat–alfalfa–alfalfa (COAA). Soils were sampled in 2002, Years 23 and 48 of the experiments located in northeast and north-central Iowa, respectively. The experiments were conducted using a replicated split-plot design under conventional tillage. A native prairie was sampled to provide a reference (for one site only). Cropping systems that contained alfalfa had the highest SOC stocks, whereas the CS system generally had the lowest SOC stocks. Concentrations of SOC increased significantly between 1990 and 2002 in only two of the nine systems for which historical data were available, the fertilized CC and COAA systems at one site. Soil quality indices such as particulate organic carbon (POC) were influenced by cropping system, with CS \u3c CC \u3c CCOA. In the native prairie, SOC, POC, and resistant C concentrations were 2.8, 2.6, and 3.9 times, respectively, the highest values in cropped soil, indicating that cultivated soils had not recovered to precultivation conditions. Although corn yields increased with N additions, N fertilization increased SOC stocks only in the CC system at one site. Considering the C cost for N fertilizer production, N fertilization generally had a net negative effect on C sequestration

    Soybean yield and crop stage response to planting date and cultivar maturity in Iowa, USA

    Get PDF
    Soybean [Glycine max (L.) Merr.] planting date and maturity group are important agronomic decisions. This study quantified how maturity group selection and later than optimal planting dates affected grain yield and crop development across Iowa, US. Field experiments were conducted in seven locations between 2014 and 2016. Cultivar maturities ranged from 2.2 to 3.7 MG and planting dates targeted for 20-day intervals from early May to early July. Soybean grain yield ranged from 0.27 to 7.54 Mg ha-1. Cultivar maturity had little to no effect on grain yield at 4 of 7 sites while planting date was significant at all sites (p\u3c0.001) and the planting date and cultivar maturity interaction was not significant. As planting date was delayed, the VE- R3 and R3-R7 periods were each shortened by up to 15-20 days. The shorter growing period resulted in less radiation and growing degree day accumulation. A exponential-plateau relationship between relative yield and GDD was evident for the VE-R3 phase, with a plateau at 700oC days. A linear relationship between yield and GDD was evident from R3-R7, suggesting greater yield with more accumulated GDD. The opposite relationships were found for photoperiod which had a linear relationship for the VE-R3 and curvilinear for the R3-R7 phases. These results showed that yield potential would be maximized by planting before 20 May. We concluded that planting earlier in the spring was a better management practice than maturity selection to maximize yield and the R3-R7 period duration was critical in determining potential yield

    Lengthening of maize maturity time is not a widespread climate change adaptation strategy in the US Midwest

    Get PDF
    Increasing temperatures in the US Midwest are projected to reduce maize yields because warmer temperatures hasten reproductive development and, as a result, shorten the grain fill period. However, there is widespread expectation that farmers will mitigate projected yield losses by planting longer season hybrids that lengthen the grain fill period. Here, we ask: (a) how current hybrid maturity length relates to thermal availability of the local climate, and (b) if farmers are shifting to longer season hybrids in response to a warming climate. To address these questions, we used county‐level Pioneer brand hybrid sales (Corteva Agriscience) across 17 years and 650 counties in 10 Midwest states (IA, IL, IN, MI, MN, MO, ND, OH, SD, and WI). Northern counties were shown to select hybrid maturities with growing degree day (GDD°C) requirements more closely related to the environmentally available GDD compared to central and southern counties. This measure, termed “thermal overlap,” ranged from complete 106% in northern counties to a mere 63% in southern counties. The relationship between thermal overlap and latitude was fit using split‐line regression and a breakpoint of 42.8°N was identified. Over the 17‐years, hybrid maturities shortened across the majority of the Midwest with only a minority of counties lengthening in select northern and southern areas. The annual change in maturity ranged from −5.4 to 4.1 GDD year−1 with a median of −0.9 GDD year−1. The shortening of hybrid maturity contrasts with widespread expectations of hybrid maturity aligning with magnitude of warming. Factors other than thermal availability appear to more strongly impact farmer decision‐making such as the benefit of shorter maturity hybrids on grain drying costs, direct delivery to ethanol biorefineries, field operability, labor constraints, and crop genetics availability. Prediction of hybrid choice under future climate scenarios must include climatic factors, physiological‐genetic attributes, socio‐economic, and operational constraints

    Nitrogen Fertilization and Cropping System Impacts on Soil Quality in Midwestern Mollisols

    No full text
    High grain production of corn (Zea mays L.) can be maintained by adding inorganic N fertilizer, and also by using crop rotations that include alfalfa (Medicago sativa L.), but the relative impact of these management practices on soil quality is uncertain. We examined the effects on soil of N fertilization rate (0, 90, 180, 270 kg ha−1, corn phase only) in four cropping systems: CC, continuous corn; CS, corn–soybean [Glycine max (L.) Merr.]; CCOA, corn–corn–oat (Avena sativa L.)–alfalfa; and corn–oat–alfalfa–alfalfa (COAA). The 23- and 48-yr-old experimental sites, situated in northeast (Nashua) and north central (Kanawha) Iowa, were in a replicated split-plot design and managed with conventional tillage. At Nashua, we measured available N, potential net N mineralization and microbial biomass C (MBC) throughout the growing season; all were significantly higher in the CCOA system. At both sites, post-harvest N stocks, and soil organic C (SOC) concentrations were significantly higher in systems containing alfalfa. Grain yield was most strongly correlated with soil N properties. At Nashua, N fertilizer additions resulted in significantly lower soil pH (0- to 15-cm depth) and lower exchangeable Ca, Mg, and K and cation exchange capacity (CEC) in the CC and CCOA systems. In an undisturbed prairie reference site for Nashua, low available N, low pH, and high CEC suggested a strong influence of the vegetation on nutrient cycling. In terms of management of soil fertility, inclusion of alfalfa in the rotation differed fundamentally from addition of N fertilizer because high yield was maintained with fewer adverse effects on soil quality.This article is from Soil Science Society of America Journal 70 (2006): 249, doi:10.2136/sssaj2005.0058.</p
    corecore