25 research outputs found

    MICROSTRUCTURE AND MICROHARDNESS EVALUATION FOR NiCrAlY MATERIALS MANUFACTURED BY SPARK PLASMA SINTERING AND PLASMA SPRAYING

    Get PDF
    NiCrAlY deposited by different thermal spraying methods is commonly used as the bond coat material in thermal barrier coatings (TBCs). In the present study, two experimental coatings were deposited by hybrid water stabilized plasma (WSP-H) and radio frequency inductively coupled plasma (RF-ICP) using the same feedstock powder. Spark plasma sintering (SPS) was used to manufacture a compact NiCrAlY from the same feedstock powder as a reference material. Microstructure, internal oxidation, phase characterization and quantification of the mechanical behaviour in terms of microhardness were studied. The investigations clearly showed microstructural and mechanical differences between the NiCrAlY samples manufactured by different plasma technologies. The results confirmed that SPS and RF-ICP provide dense structures with no oxides due to the fabrication under protective atmosphere and similar mechanical properties. Thus, RF-ICP may be used for deposition of very dense coatings with microstructure and hardness comparable to compacted materials prepared by SPS

    Corrosion of carbon steel OLC 45 and stainless steel aisi 304L in wines from Banat county

    Get PDF
    In the present paper, results on the corrosion rate of carbon steel OLC 45 (similar to EU C 45) and stainless steel AISI 304L in a few species of wines from Banat County (Romania) have been emphasized. Corrosion rates have been determined using weight loss measurements, as well as Tafel plots method. The effect of wines on the surface of studied steels has been revealed using scanning electron microscopy. The obtained results show that the values of the corrosion rates in the wines tested for OLC 45 are close to the maximum allowed limit, which means that this type of steel cannot be used in the wine processing and storage. On the contrary, the corrosion rates for AISI 304L steel are extremely low in all the analyzed wines, which proves that they can be used both for wine processing and storage

    Metal content of seashells from black sea's Romanian coast

    Get PDF
    The main metals from various species of seashells, commonly found on the Black Sea’s Romanian coast, were determined by using microwave plasma atomic emission spectroscopy (MP-AES) and energy-dispersive X-ray spectroscopy (EDX). As expected, calcium was the main component, followed by magnesium, aluminum, iron and manganese

    Dissimilar Laser Welding of AISI 321 and AISI 1010

    Get PDF
    This paper presents the dissimilar laser welding of AISI 321 stainless steel and AISI 1010 carbon steel thin sheets in butt joint geometry using a 1 kW diode laser. Influence of the welding speed on the geometry and microstructure of the joints is discussed. Structural characterisation of the welds is realised through optical, electron microscopy and EDS analysis, observing distinct mixed and unmixed areas in the weld bead because of the high cooling rate. The weld bead presents an austenitic-martensitic-ferrite structure, characterized by austenitic twin grains with ferrite particles precipitated on grain boundaries, and islands comprising a ferrite-martensite structure. Chromium and nickel migration in the weld bead area was observed. Good tensile behaviour of the dissimilar joints was obtained, as all the specimen failure occurs far-off the weld zone

    Microstructure and Mechanical Characteristics of Ti-Ta Alloys before and after NaOH Treatment and Their Behavior in Simulated Body Fluid

    No full text
    In the present study, the microstructure and mechanical properties of Ti-xTa (x = 5%, 15%, and 25% wt. Ta) alloys produced by using an induced furnace by the cold crucible levitation fusion technique were investigated and compared. The microstructure was examined by scanning electron microscopy and X-ray diffraction. The alloys present a microstructure characterized by the α′ lamellar structure in a matrix of the transformed β phase. From the bulk materials, the samples for the tensile tests were prepared and based on the results and the elastic modulus was calculated by deducting the lowest values for the Ti-25Ta alloy. Moreover, a surface alkali treatment functionalization was performed using 10 M NaOH. The microstructure of the new developed films on the surface of the Ti-xTa alloys was investigated by scanning electron microscopy and the chemical analysis revealed the formation of sodium titanate and sodium tantanate along with titanium and tantalum oxides. Using low loads, the Vickers hardness test revealed increased hardness values for the alkali-treated samples. After exposure to simulated body fluid, phosphorus and calcium were identified on the surface of the new developed film, indicating the development of apatite. The corrosion resistance was evaluated by open cell potential measurements in simulated body fluid before and after NaOH treatment. The tests were performed at 22 °C as well as at 40 °C, simulating fever. The results show that the Ta content has a detrimental effect on the investigated alloys’ microstructure, hardness, elastic modulus, and corrosion behavior

    Microstructure and microhardness evaluation for NiCrAlY materials manufactured by spark plasma sintering and plasma spraying

    No full text
    NiCrAlY deposited by different thermal spraying methods is commonly used as the bond coat material in thermal barrier coatings (TBCs). In the present study, two experimental coatings were deposited by hybrid water stabilized plasma (WSP-H) and radio frequency inductively coupled plasma (RF-ICP) using the same feedstock powder. Spark plasma sintering (SPS) was used to manufacture a compact NiCrAlY from the same feedstock powder as a reference material. Microstructure, internal oxidation, phase characterization and quantification of the mechanical behaviour in terms of microhardness were studied. The investigations clearly showed microstructural and mechanical differences between the NiCrAlY samples manufactured by different plasma technologies. The results confirmed that SPS and RF-ICP provide dense structures with no oxides due to the fabrication under protective atmosphere and similar mechanical properties. Thus, RF-ICP may be used for deposition of very dense coatings with microstructure and hardness comparable to compacted materials prepared by SPS

    Enhancement of the Catalytic Performance and Operational Stability of Sol-Gel-Entrapped Cellulase by Tailoring the Matrix Structure and Properties

    No full text
    Commercial cellulase Cellic CTec2 was immobilized by the entrapment technique in sol–gel matrices, and sol–gel entrapment with deposition onto magnetic nanoparticles, using binary or ternary systems of silane precursors with alkyl- or aryl-trimethoxysilanes, at different molar ratios. Appropriate tailoring of the sol–gel matrix allowed for the enhancement of the catalytic efficiency of the cellulase biocatalyst, which was then evaluated in the hydrolysis reaction of Avicel microcrystalline cellulose. A correlation between the catalytic activity with the properties of the sol–gel matrix of the nanobiocatalysts was observed using several characterization methods: scanning electron microscopy (SEM), fluorescence microscopy (FM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA/DTA). The homogeneous distribution of the enzymes in the sol–gel matrix and the mass loss profile as a function of temperature were highlighted. The influence of temperature and pH of the reaction medium on the catalytic performance of the nanobiocatalysts as well as the operational stability under optimized reaction conditions were also investigated; the immobilized biocatalysts proved their superiority in comparison to the native cellulase. The magnetic cellulase biocatalyst with the highest efficiency was reused in seven successive batch hydrolysis cycles of microcrystalline cellulose with remanent activity values that were over 40%, thus we obtained promising results for scaling-up the process

    Development of a Tailored Sol-Gel Immobilized Biocatalyst for Sustainable Synthesis of the Food Aroma Ester <i>n</i>-Amyl Caproate in Continuous Solventless System

    No full text
    This study reports the synthesis of a hybrid sol-gel material, based on organically modified silanes (ORMOSILs) with epoxy functional groups, and its application in the stabilization of lipase type B from Candida antarctica (CalB) through sol-gel entrapment. The key immobilization parameters in the sol-gel entrapment of lipase using epoxysilanes were optimized by the design of numerous experiments, demonstrating that glycidoxypropyl-trimethoxysilane can allow the formation of a matrix with excellent properties in view of the biocatalytic esterifications catalyzed by this lipase, at an enzyme loading of 25 g/mol of silane. The characterization of the immobilized biocatalyst and the correlation of its catalytic efficiency with the morphological and physicochemical properties of the sol-gel matrix was accomplished through scanning electron microscopy (SEM), fluorescence microscopy (FM), as well as thermogravimetric and differential thermal analysis (TGA/DTA). The operational and thermal stability of lipase were increased as a result of immobilization, with the entrapped lipase retaining 99% activity after 10 successive reaction cycles in the batch solventless synthesis of n-amyl caproate. A possible correlation of optimal productivity and yield was attempted for this immobilized lipase via the continuous flow synthesis of n-amyl caproate in a solventless system. The robustness and excellent biocatalytic efficiency of the optimized biocatalyst provide a promising solution for the synthesis of food-grade flavor esters, even at larger scales

    Chemical Modification of Chitosan for Removal of Pb(II) Ions from Aqueous Solutions

    No full text
    Biomacromolecule have a significant contribution to the adsorption of metal ions. Moreover, chitosan is one of the most studied biomacromolecule, which has shown a good performance in the field of wastewater treatment. In this context, a new adsorbent of the aminophosphonic modified chitosan-supported Ni(II) ions type was prepared from the naturally biopolymer, chitosan. In the first step, modified chitosan with aminophosphonic acid groups was prepared using the &ldquo;one-pot&rdquo; Kabachnik-Fields reaction. It was characterized by different techniques: FTIR, SEM/EDAX, TGA, and 31P-NMR. In the second step, the modified chitosan with aminophosphonic acid was impregnated with Ni(II) ions using the hydrothermal reaction at different values of pH (5, 6 and 7). The physical-chemical characteristics of final products (modified chitosan carrying aminophosphonic groups and Ni(II) ions) were investigated using FTIR, SEM images, EDAX spectra and thermogravimetric analysis. In this work, the most important objective was the investigation of the adsorbent performance of the chitosan modified with aminophosphonic groups and Ni(II) ions in the process of removing Pb(II) ions from aqueous solutions by studying the effect of pH, contact time, and Pb(II) ions concentration. For removal of Pb(II) ions from the aqueous solution, the batch adsorption method was used

    A SEM-EDX Study on the Structure of Phenyl Phosphinic Hybrids Containing Boron and Zirconium

    No full text
    The SEM-EDX method was used to investigate the structure and morphology of organic–inorganic hybrids containing zirconium, boron and phosphorus compounds, synthesized by the sol–gel method. We started by using, for the first time together, zirconyl chloride hexa-hydrate (ZrOCl2·6H2O), phenyl phosphinic acid and triethyl borate as precursors and reagents, at different molar ratios. The obtained hybrids showed a very high thermal stability and are not soluble in water or in organic solvents. As a consequence, such hybrid solid materials are suitable for applications at high temperatures. The obtained hybrids have complex 3D structures and form organic–inorganic networks containing Zr-O-Zr, Zr-O-P and Zr-O-B bridges. Such organic–inorganic networks are also expected to form supramolecular structures and to have many potential applications in different fields of great interest such as catalysis, medicine, agriculture, energy storage, fuel cells, sensors, electrochemical devices and supramolecular chemistry
    corecore