20 research outputs found

    Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice

    Get PDF
    UnlabelledDiabetic obesity is associated with increased fracture risk in adults and adolescents. We find in both adolescent and adult mice dramatically inferior mechanical properties and structural quality of cortical bone, in agreement with the human fracture data, although some aspects of the response to obesity appear to differ by age.IntroductionThe association of obesity with bone is complex and varies with age. Diabetic obese adolescents and adult humans have increased fracture risk. Prior studies have shown reduced mechanical properties as a result of high-fat diet (HFD) but do not fully address size-independent mechanical properties or structural quality, which are important to understand material behavior.MethodsCortical bone from femurs and tibiae from two age groups of C57BL/6 mice fed either HFD or low-fat diet (LFD) were evaluated for structural and bone turnover changes (SEM and histomorphometry) and tested for bending strength, bending stiffness, and fracture toughness. Leptin, IGF-I, and non-enzymatic glycation measurements were also collected.ResultsIn both young and adult mice fed on HFD, femoral strength, stiffness, and toughness are all dramatically lower than controls. Inferior lamellar and osteocyte alignment also point to reduced structural quality in both age groups. Bone size was largely unaffected by HFD, although there was a shift from increasing bone size in obese adolescents to decreasing in adults. IGF-I levels were lower in young obese mice only.ConclusionsWhile the response to obesity of murine cortical bone mass, bone formation, and hormonal changes appear to differ by age, the bone mechanical properties for young and adult groups are similar. In agreement with human fracture trends, adult mice may be similarly susceptible to bone fracture to the young group, although cortical bone in the two age groups responds to diabetic obesity differently

    Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

    Get PDF
    During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-β has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-β signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-β signaling on bone remain unclear. To examine the role of TGF-β in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-β type I receptor (TβRI) kinase on bone mass, architecture and material properties. Inhibition of TβRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TβRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TβRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TβRI inhibitors may be effective in treating conditions of skeletal fragility

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
    corecore