2,613 research outputs found

    Nonlinear cross Gramians and gradient systems

    Get PDF
    We study the notion of cross Gramians for non-linear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that precisely correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    Graph complexes in deformation quantization

    Full text link
    Kontsevich's formality theorem and the consequent star-product formula rely on the construction of an L∞L_\infty-morphism between the DGLA of polyvector fields and the DGLA of polydifferential operators. This construction uses a version of graphical calculus. In this article we present the details of this graphical calculus with emphasis on its algebraic features. It is a morphism of differential graded Lie algebras between the Kontsevich DGLA of admissible graphs and the Chevalley-Eilenberg DGLA of linear homomorphisms between polyvector fields and polydifferential operators. Kontsevich's proof of the formality morphism is reexamined in this light and an algebraic framework for discussing the tree-level reduction of Kontsevich's star-product is described.Comment: 39 pages; 3 eps figures; uses Xy-pic. Final version. Details added, mainly concerning the tree-level approximation. Typos corrected. An abridged version will appear in Lett. Math. Phy

    Passivity Preserving Model Order Reduction For the SMIB

    Get PDF

    Nonlinear cross Gramians and gradient systems

    Get PDF

    Time After Time: Notes on Delays In Spiking Neural P Systems

    Full text link
    Spiking Neural P systems, SNP systems for short, are biologically inspired computing devices based on how neurons perform computations. SNP systems use only one type of symbol, the spike, in the computations. Information is encoded in the time differences of spikes or the multiplicity of spikes produced at certain times. SNP systems with delays (associated with rules) and those without delays are two of several Turing complete SNP system variants in literature. In this work we investigate how restricted forms of SNP systems with delays can be simulated by SNP systems without delays. We show the simulations for the following spike routing constructs: sequential, iteration, join, and split.Comment: 11 pages, 9 figures, 4 lemmas, 1 theorem, preprint of Workshop on Computation: Theory and Practice 2012 at DLSU, Manila together with UP Diliman, DLSU, Tokyo Institute of Technology, and Osaka universit
    • …
    corecore