14 research outputs found

    Comparison of POD reduced order strategies for the nonlinear 2D Shallow Water Equations

    Full text link
    This paper introduces tensorial calculus techniques in the framework of Proper Orthogonal Decomposition (POD) to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree pp. Such nonlinear terms have an on-line complexity of O(kp+1)\mathcal{O}(k^{p+1}), where kk is the dimension of POD basis, and therefore is independent of full space dimension. However it is efficient only for quadratic nonlinear terms since for higher nonlinearities standard POD proves to be less time consuming once the POD basis dimension kk is increased. Numerical experiments are carried out with a two dimensional shallow water equation (SWE) test problem to compare the performance of tensorial POD, standard POD, and POD/Discrete Empirical Interpolation Method (DEIM). Numerical results show that tensorial POD decreases by 76×76\times times the computational cost of the on-line stage of standard POD for configurations using more than 300,000300,000 model variables. The tensorial POD SWE model was only 2−8×2-8\times slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM shallow water equation model to compute its off-line stage faster than the standard and tensorial POD approaches.Comment: 23 pages, 8 figures, 5 table

    Memory embedded non-intrusive reduced order modeling of non-ergodic flows

    Full text link
    Generating a digital twin of any complex system requires modeling and computational approaches that are efficient, accurate, and modular. Traditional reduced order modeling techniques are targeted at only the first two but the novel non-intrusive approach presented in this study is an attempt at taking all three into account effectively compared to their traditional counterparts. Based on dimensionality reduction using proper orthogonal decomposition (POD), we introduce a long short-term memory (LSTM) neural network architecture together with a principal interval decomposition (PID) framework as an enabler to account for localized modal deformation, which is a key element in accurate reduced order modeling of convective flows. Our applications for convection dominated systems governed by Burgers, Navier-Stokes, and Boussinesq equations demonstrate that the proposed approach yields significantly more accurate predictions than the POD-Galerkin method, and could be a key enabler towards near real-time predictions of unsteady flows

    CAMERA: A Method for Cost-aware, Adaptive, Multifidelity, Efficient Reliability Analysis

    Full text link
    Estimating probability of failure in aerospace systems is a critical requirement for flight certification and qualification. Failure probability estimation involves resolving tails of probability distribution, and Monte Carlo sampling methods are intractable when expensive high-fidelity simulations have to be queried. We propose a method to use models of multiple fidelities that trade accuracy for computational efficiency. Specifically, we propose the use of multifidelity Gaussian process models to efficiently fuse models at multiple fidelity, thereby offering a cheap surrogate model that emulates the original model at all fidelities. Furthermore, we propose a novel sequential \emph{acquisition function}-based experiment design framework that can automatically select samples from appropriate fidelity models to make predictions about quantities of interest in the highest fidelity. We use our proposed approach in an importance sampling setting and demonstrate our method on the failure level set estimation and probability estimation on synthetic test functions as well as two real-world applications, namely, the reliability analysis of a gas turbine engine blade using a finite element method and a transonic aerodynamic wing test case using Reynolds-averaged Navier--Stokes equations. We demonstrate that our method predicts the failure boundary and probability more accurately and computationally efficiently while using varying fidelity models compared with using just a single expensive high-fidelity model.Comment: 35 page, 16 figure

    Sensitivity to Large-Scale Environmental Fields of the Relaxed Arakawa-Schubert Parameterization in the Nasa GEOS-1 GCM

    No full text
    This article is organized as follows. In Section 2, we briefly describe the theory and algorithm of adjoint sensitivity studies. Section 3 presents the result of the sensitivity analyses, and conclusions are drawn in Section 4

    Long short-term memory embedded nudging schemes for nonlinear data assimilation of geophysical flows

    No full text
    Reduced rank nonlinear filters are increasingly utilized in data assimilation of geophysical flows but often require a set of ensemble forward simulations to estimate forecast covariance. On the other hand, predictor–corrector type nudging approaches are still attractive due to their simplicity of implementation when more complex methods need to be avoided. However, optimal estimate of the nudging gain matrix might be cumbersome. In this paper, we put forth a fully nonintrusive recurrent neural network approach based on a long short-term memory (LSTM) embedding architecture to estimate the nudging term, which plays a role not only to force the state trajectories to the observations but also acts as a stabilizer. Furthermore, our approach relies on the power of archival data, and the trained model can be retrained effectively due to the power of transfer learning in any neural network applications. In order to verify the feasibility of the proposed approach, we perform twin experiments using the Lorenz 96 system. Our results demonstrate that the proposed LSTM nudging approach yields more accurate estimates than both the extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) when only sparse observations are available. With the availability of emerging artificial intelligence friendly and modular hardware technologies and heterogeneous computing platforms, we articulate that our simplistic nudging framework turns out to be computationally more efficient than either the EKF or EnKF approaches
    corecore