201 research outputs found

    Saliency Ratio and Power Factor of IPM Motors Optimally Designed for High Efficiency and Low Cost Objectives

    Get PDF
    This paper uses formal mathematical optimization techniques based on parametric finite-element-based computationally efficient models and differential evolution algorithms. For constant-power applications, in the novel approach described, three concurrent objective functions are minimized: material cost, losses, in order to ensure high efficiency, and the difference between the rated and the characteristic current, aiming to achieve very high constant-power flux-weakening range. Only the first two objectives are considered for constant-torque applications. Two types of interior permanent magnet rotors in a single- and double-layer V-shaped configuration are considered, respectively. The stator has the typical two slots per pole and phase distributed winding configuration. The results for the constant-torque design show that, in line with expectations, high efficiency and high power factor machines are more costly, and that the low-cost machines have poorer efficiency and power factor and most importantly, and despite a common misconception, the saliency ratio may also be lower in this case. For constant-power designs, the saliency ratio can be beneficial. Nevertheless, despite a common misconception, when cost is considered alongside performance as an objective, a higher saliency ratio does not necessarily improve the power factors of motors suitable for ideal infinite flux weakening

    Load Balancing with Energy Storage Systems Based on Co-Simulation of Multiple Smart Buildings and Distribution Networks

    Get PDF
    In this paper, we present a co-simulation framework that combines two main simulation tools, one that provides detailed multiple building energy simulation ability with Energy-Plus being the core engine, and the other one that is a distribution level simulator, Matpower. Such a framework can be used to develop and study district level optimization techniques that exploit the interaction between a smart electric grid and buildings as well as the interaction between buildings themselves to achieve energy and cost savings and better energy management beyond what one can achieve through techniques applied at the building level only. We propose a heuristic algorithm to do load balancing in distribution networks affected by service restoration activities. Balancing is achieved through the use of utility directed usage of battery energy storage systems (BESS). This is achieved through demand response (DR) type signals that the utility communicates to individual buildings. We report simulation results on two test cases constructed with a 9-bus distribution network and a 57-bus distribution network, respectively. We apply the proposed balancing heuristic and show how energy storage systems can be used for temporary relief of impacted networks

    Optimization of Aggregated EV Power in Residential Communities with Smart Homes

    Get PDF
    Electric vehicles (EVs) tend to increase peak power for residences in the evening when house owners return home and begin charging. The aggregated EV charging demand can cause a sudden rise in the peak power at the distribution system level, resulting in a “dragon curve” Such phenomenon, combined with the “duck curve” that is caused by high photovoltaic (PV) penetration in residential communities, requires fast ramping rates and expanded capabilities for local distribution transformers and main feeder cables provided by the utility. As a solution, a residential energy storage system (RESS) can store surplus PV generation during midday and use the stored energy to support the peak power demand in the evening. House owners benefit from this strategy by avoiding electricity sales to the grid at low rates and by reducing energy usage during high Time-of-Use (ToU) periods. In this paper, a community with smart homes that include PV systems, RESSs and EVs was modeled. The EV models were developed based on data from the National Travel Household Survey (NHTS). The EV charging and RESS operation were scheduled to reduce the daily utility charge. The entire power system worked as virtual power plant as it kept the aggregated power constant for a long period of time

    Improving the Power Outage Resilience of Buildings with Solar PV through the Use of Battery Systems and EV Energy Storage

    Get PDF
    Buildings with solar photovoltaic (PV) generation and a stationary battery energy storage system (BESS) may self-sustain an uninterrupted full-level electricity supply during power outages. The duration of off-grid operation is dependent on the time of the power fault and the capabilities of the home energy management system (HEMS). In this paper, building resilience is quantified by analyzing the self-sustainment duration for all possible power outages throughout an entire year. An evaluation method is proposed and exercised on a reference house in California climate zone 9 for which the detailed electricity usage is simulated using the EnergyPlus software. The influence of factors such as energy use behavioral patterns, energy storage capacity from the BESS, and an electric vehicle (EV) battery on the building resilience is evaluated. Varying combinations of energy storage and controllable loads are studied for optimally improved resilience based on user preferences. It is shown that for the target home and region with a solar PV system of 7.2 kW, a BESS with a capacity of 11 kWh, and an EV with a battery of 80 kWh permanently connected to the home, off-grid self-sustained full operation is guaranteed for at least 72 h

    Optimal Design of IPM Motors With Different Cooling Systems and Winding Configurations

    Get PDF
    Performance improvement of permanent magnet (PM) motors through optimization techniques has been widely investigated in the literature. Oftentimes the practice of design optimization leads to derivation/interpretation of optimal scaling rules of PM motors for a particular loading condition. This paper demonstrates how these derivations vary with respect to the machine ampere loading and ferrous core saturation level. A parallel sensitivity analysis using a second-order response surface methodology followed by a large-scale design optimization based on evolutionary algorithms are pursued in order to establish the variation of the relationships between the main design parameters and the performance characteristics with respect to the ampere loading and magnetic core saturation levels prevalent in the naturally cooled, fan-cooled, and liquid-cooled machines. For this purpose, a finite-element-based platform with a full account of complex geometry, magnetic core nonlinearities, and stator and rotor losses is used. Four main performance metrics including active material cost, power losses, torque ripple, and rotor PM demagnetization are investigated for two generic industrial PM motors with distributed and concentrated windings with subsequent conclusions drawn based on the results

    Combined Use of EV Batteries and PV Systems for Improving Building Resilience to Blackouts

    Get PDF
    Californian residencies face increased risk of blackout. The state depends more on imported electricity that may not always be available to fill the gap between renewable generation and demand. For buildings with PV panels, storing the surplus solar power to support the load during a blackout can be achieved with a large energy storage system (ESS). The electric vehicle (EV) provides potential solutions as it can expand the energy capacity of the residential ESS with its battery. In this paper, a reference house in California was modeled in EnergyPlus. The building resilience for a house with different load percentages were studied, for both with, and without EV scenarios

    A Hybrid Analytical and FE-Based Method for Calculating AC Eddy Current Winding Losses Taking 3D Effects into Account

    Get PDF
    This paper proposes a new hybrid analytical and numerical FE-based method for calculating ac eddy current losses in wire windings and demonstrates its applicability for axial flux electric machines. The method takes into account 3D field effects in order to achieve accurate results and yet greatly reduce computational efforts. It is also shown that hybrid methods based on 2D FE models, which require semi-empirical correction factors, may over-estimate the eddy current losses. The new 3D FE-based method is advantageous as it employs minimum simplifications and considers the end turns in the eddy current path, the magnetic flux density variation along the effective length of coils, and the field fringing and leakage, which ultimately increases the accuracy of simulations. Case studies of axial flux PM motors: one with concentrated windings and open slots and another one with a coreless topology, are included

    Establishing the Relative Merits of Interior and Spoke-Type Permanent-Magnet Machines With Ferrite or NdFeB Through Systematic Design Optimization

    Get PDF
    In this paper, a multiobjective design optimization method combining design-of-experiments techniques and differential-evolution algorithms is presented. The method was implemented and utilized in order to provide practical engineering insights for the optimal design of interior and spoke-type permanent-magnet machines. Two combinations with 12 slots and 8 poles and 12 slots and 10 poles, respectively, have been studied in conjunction with rare-earth neodymium-iron-boron (NdFeB) and ferrites. As part of the optimization process, a computationally efficient finite-element electromagnetic analysis was employed for estimating the performance of thousands of candidate designs. Three optimization objectives were concurrently considered for minimum total material cost, power losses, and torque ripple, respectively. Independent variables were considered for both the stator and rotor geometries. A discussion based on a systematic comparison is included, showing, among other things and despite common misconception, that comparable cost versus loss Paretos can be achieved with any of the rotor topologies studied

    Co-Simulation of Electric Power Distribution and Buildings with EnergyPlus and OpenDSS

    Get PDF
    Problem Formulation Need for accurate load modeling that incorporates human comfort into community-level demand response (DR) studies Achievable through co-simulation of advanced digital twins for buildings with EnergyPlus and distribution systems with OpenDS

    Multilayer Concentrated Windings for Axial Flux PM Machines

    Get PDF
    Coreless axial flux machines are of interest because of the absence of stator core losses and cogging torque. These machines generally employ concentrated windings. One of the challenges with such a winding is that the torque producing MMF component that corresponds to the fundamental of the magnet excitation is accompanied by substantial asynchronous components. These harmonics cause losses in the rotor core and magnets, which can become significant at high speeds. This paper proposes a new multilayer winding arrangement to eliminate the non-torque producing MMF components. This winding is applied to a 12-coil 16-pole coreless axial flux machine. The efficacy of the winding is established by 3-D finite-element analysis
    corecore