43 research outputs found

    Geometry-independent tight-binding method for massless Dirac fermions in two dimensions

    Full text link
    The Nielsen-Ninomiya theorem, dubbed `fermion-doubling', poses a problem for the naive discretization of a single (massless) Dirac cone on a two-dimensional surface. The inevitable appearance of an additional, unphysical fermionic mode can, for example, be circumvented by introducing an extra dimension to spatially separate Dirac cones. In this work, we propose a geometry-independent protocol based on a tight-binding model for a three-dimensional topological insulator on a cubic lattice. The low-energy theory, below the bulk gap, corresponds to a Dirac cone on its two-dimensional surface which can have an arbitrary geometry. We introduce a method where only a thin shell of the topological insulator needs to be simulated. Depending on the setup, we propose to gap out the states on the undesired surfaces either by breaking the time-reversal symmetry or by introducing a superconducting pairing. We show that it is enough to have a thickness of the topological-insulator shell of three to nine lattice constants. This leads to an effectively two-dimensional scaling with minimal and fixed shell thickness. We test the idea by comparing the spectrum and probability distribution to analytical results for both a proximitized Dirac mode and a Dirac mode on a sphere which exhibits a nontrivial spin-connection. The protocol yields a tight-binding model on a cubic lattice simulating Dirac cones on arbitrary surfaces with only a small overhead due to the finite thickness of the shell.Comment: 10 pages, 7 figure

    Simulating Floquet topological phases in static systems

    Get PDF
    We show that scattering from the boundary of static, higher-order topological insulators (HOTIs) can be used to simulate the behavior of (time-periodic) Floquet topological insulators. We consider D-dimensional HOTIs with gapless corner states which are weakly probed by external waves in a scattering setup. We find that the unitary reflection matrix describing back-scattering from the boundary of the HOTI is topologically equivalent to a (D-1)-dimensional nontrivial Floquet operator. To characterize the topology of the reflection matrix, we introduce the concept of `nested' scattering matrices. Our results provide a route to engineer topological Floquet systems in the lab without the need for external driving. As benefit, the topological system does not to suffer from decoherence and heating.Comment: 31 pages, 8 figures. Updated the paper based on the referee reports at https://scipost.org/submissions/2001.08217

    Anomalous levitation and annihilation in Floquet topological insulators

    Get PDF
    Anderson localization in two-dimensional topological insulators takes place via the so-called levitation and pair annihilation process. As disorder is increased, extended bulk states carrying opposite topological invariants move towards each other in energy, reducing the size of the topological gap, eventually meeting and localizing. This results in a topologically trivial Anderson insulator. Here, we introduce the anomalous levitation and pair annihilation, a process unique to periodically-driven, or Floquet systems. Due to the periodicity of the quasienergy spectrum, we find it is possible for the topological gap to increase as a function of disorder strength. Thus, after all bulk states have localized, the system remains topologically nontrivial, forming an anomalous Floquet Anderson insulator (AFAI) phase. We show a concrete example for this process, adding disorder via onsite potential "kicks" to a Chern insulator model. By changing the period between kicks, we can tune which type of (conventional or anomalous) levitation-and-annihilation occurs in the system. We expect our results to be applicable to generic Floquet topological systems and to provide an accessible way to realize AFAIs experimentally, without the need for multi-step driving schemes.Comment: 5+4 pages, 5+5 figures, v2: this is the final, published versio

    Lack of near-sightedness principle in non-Hermitian systems

    Full text link
    The non-Hermitian skin effect is a phenomenon in which an extensive number of states accumulates at the boundaries of a system. It has been associated to nontrivial topology, with nonzero bulk invariants predicting its appearance and its position in real space. Here we demonstrate that the non-Hermitian skin effect is not a topological phenomenon in general: when translation symmetry is broken by a single non-Hermitian impurity, skin modes are depleted at the boundary and accumulate at the impurity site, without changing any bulk invariant. This may occur even for a fully Hermitian bulk

    Floquet-Anderson localization in the Thouless pump and how to avoid it

    Full text link
    We investigate numerically how onsite disorder affects conduction in the periodically driven Rice-Mele model, a prototypical realization of the Thouless pump. Although the pump is robust against disorder in the fully adiabatic limit, much less is known about the case of finite period time TT, which is relevant also in light of recent experimental realizations. We find that at any fixed period time and nonzero disorder, increasing the system size LL\to\infty always leads to a breakdown of the pump, indicating Anderson localization of the Floquet states. Our numerics indicate, however, that in a properly defined thermodynamic limit, where L/TθL/T^\theta is kept constant, Anderson localization can be avoided, and the charge pumped per cycle has a well-defined value -- as long as the disorder is not too strong. The critical exponent θ\theta is not universal, rather, its value depends on the disorder strength. Our findings are relevant for practical, experimental realizations of the Thouless pump, for studies investigating the nature of its current-carrying Floquet eigenstates, as well as the mechanism of the full breakdown of the pump, expected if the disorder exceeds a critical value.Comment: 5+5 pages, 4+6 figure
    corecore