64 research outputs found

    Homology modeling and molecular dynamics simulations of MUC1-9/H-2Kb complex suggest novel binding interactions

    Get PDF
    International audienceHuman MUC1 is over-expressed in human adenocarcinomas and has been used as a target for immunotherapy studies. The 9-mer MUC1-9 peptide has been identified as one of the peptides which binds to murine MHC class I H-2K. The structure of MUC1-9 in complex with H-2K has been modeled and simulated with classical molecular dynamics, based on the x-ray structure of the SEV9 peptide/H-2K complex. Two independent trajectories with the solvated complex (10 ns in length) were produced. Approximately 12 hydrogen bonds were identified during both trajectories to contribute to peptide/MHC complex, as well as 1-2 water mediated hydrogen bonds. Stability of the complex was also confirmed by buried surface area analysis, although the corresponding values were about 20% lower than those of the original x-ray structure. Interestingly, a bulged conformation of the peptide's central region, partially characterized as a -turn, was found exposed form the binding groove. In addition, P1 and P9 residues remained bound in the A and F binding pockets, even though there was a suggestion that P9 was more flexible. The complex lacked numerous water mediated hydrogen bonds that were present in the reference peptide x-ray structure. Moreover, local displacements of residues Asp4, Thr5 and Pro9 resulted in loss of some key interactions with the MHC molecule. This might explain the reduced affinity of the MUC1-9 peptide, relatively to SEV9, for the MHC class I H-2K

    Constructing Features Using a Hybrid Genetic Algorithm

    No full text
    A hybrid procedure that incorporates grammatical evolution and a weight decaying technique is proposed here for various classification and regression problems. The proposed method has two main phases: the creation of features and the evaluation of these features. During the first phase, using grammatical evolution, new features are created as non-linear combinations of the original features of the datasets. In the second phase, based on the characteristics of the first phase, the original dataset is modified and a neural network trained with a genetic algorithm is applied to this dataset. The proposed method was applied to an extremely wide set of datasets from the relevant literature and the experimental results were compared with four other techniques

    Learning Functions and Classes Using Rules

    No full text
    In the current work, a novel method is presented for generating rules for data classification as well as for regression problems. The proposed method generates simple rules in a high-level programming language with the help of grammatical evolution. The method does not depend on any prior knowledge of the dataset; the memory it requires for its execution is constant regardless of the objective problem, and it can be used to detect any hidden dependencies between the features of the input problem as well. The proposed method was tested on a extensive range of problems from the relevant literature, and comparative results against other machine learning techniques are presented in this manuscript

    QFC: A Parallel Software Tool for Feature Construction, Based on Grammatical Evolution

    No full text
    This paper presents and analyzes a programming tool that implements a method for classification and function regression problems. This method builds new features from existing ones with the assistance of a hybrid algorithm that makes use of artificial neural networks and grammatical evolution. The implemented software exploits modern multi-core computing units for faster execution. The method has been applied to a variety of classification and function regression problems, and an extensive comparison with other methods of computational intelligence is made

    An Integrated Environment for Monitoring and Documenting Quality in Map Composition Utilizing Cadastral Data

    No full text
    Topographic maps show both physical and artificial entities of the surface of the Earth which represent distinct features forming the building blocks in map composition. Their portrayal on the map is subject to constraints dependent on the method of data collection, the map scale, the data processing procedures and the requirements of map users. In addition to constraints, geospatial data contain uncertainties and errors that are either inherent in the data or a result of the map composition process. The type and significance of these errors determine the quality of maps. This paper elaborates on the development of an integrated environment for monitoring and documenting quality in the map composition process. In this environment, quality plays a vital role in all phases of map production whereby it is continuously assessed and documented. The methodology described involves the design and implementation of a “quality model” based on international Standards. An integrated software application for the utilization of cadastral information to produce and update topographic maps at a scale of 1:25,000 was also developed. The aim is to implement the proposed methodology in a real production environment and to use it as a proof of concept

    An Integrated Environment for Monitoring and Documenting Quality in Map Composition Utilizing Cadastral Data

    No full text
    Topographic maps show both physical and artificial entities of the surface of the Earth which represent distinct features forming the building blocks in map composition. Their portrayal on the map is subject to constraints dependent on the method of data collection, the map scale, the data processing procedures and the requirements of map users. In addition to constraints, geospatial data contain uncertainties and errors that are either inherent in the data or a result of the map composition process. The type and significance of these errors determine the quality of maps. This paper elaborates on the development of an integrated environment for monitoring and documenting quality in the map composition process. In this environment, quality plays a vital role in all phases of map production whereby it is continuously assessed and documented. The methodology described involves the design and implementation of a “quality model” based on international Standards. An integrated software application for the utilization of cadastral information to produce and update topographic maps at a scale of 1:25,000 was also developed. The aim is to implement the proposed methodology in a real production environment and to use it as a proof of concept

    Toward an Ideal Particle Swarm Optimizer for Multidimensional Functions

    No full text
    The Particle Swarm Optimization (PSO) method is a global optimization technique based on the gradual evolution of a population of solutions called particles. The method evolves the particles based on both the best position of each of them in the past and the best position of the whole. Due to its simplicity, the method has found application in many scientific areas, and for this reason, during the last few years, many modifications have been presented. This paper introduces three modifications to the method that aim to reduce the required number of function calls while maintaining the accuracy of the method in locating the global minimum. These modifications affect important components of the method, such as how fast the particles change or even how the method is terminated. The above modifications were tested on a number of known universal optimization problems from the relevant literature, and the results were compared with similar techniques

    Locating the Parameters of RBF Networks Using a Hybrid Particle Swarm Optimization Method

    No full text
    In the present work, an innovative two-phase method is presented for parameter tuning in radial basis function artificial neural networks. These kinds of machine learning models find application in many scientific fields in classification problems or in function regression. In the first phase, a technique based on particle swarm optimization is performed to locate a promising interval of values for the network parameters. Particle swarm optimization was used as it is a highly reliable method for global optimization problems, and in addition, it is one of the fastest and most-flexible techniques of its class. In the second phase, the network was trained within the optimal interval using a global optimization technique such as a genetic algorithm. Furthermore, in order to speed up the training of the network and due to the use of a two-stage method, parallel programming techniques were utilized. The new method was applied to a number of famous classification and regression datasets, and the results were more than promising
    corecore