6 research outputs found

    NF-κB subunit expression patterns in tumor versus intratumoral stroma areas.

    No full text
    <p><b>(A)</b> Representative images. <b>(B, D)</b> Scoring of NF-κB subunit expression levels in tumor (B) and stroma (D) areas. Data presented as median with boxes indicating interquartile range and whiskers indicating 95% percentiles. ns and ***: P > 0.05 and P < 0.001 for indicated comparisons by Friedman’s test followed by Dunn’s post-tests. <b>(C, E)</b> Co-expression matrixes of categorical NF-κB subunit expression levels in tumor (C) and stroma (E) areas. For this, NF-κB scores from (B) and (D) were categorized into low (0–4), intermediate (5–6), and high (7–18). ns: P > 0.05 and P: probability values by χ<sup>2</sup> tests followed by Fisher’s exact tests. <b>(F)</b> Co-expression matrixes of tumor versus stroma NF-κB subunit expression. ns: P > 0.05 and P: probability values by χ<sup>2</sup> tests followed by Fisher’s exact tests. <b>(G)</b> Correlation of tumor and stroma P100/P52 expression scores. Shown are data points, linear regression line with 95% confidence interval, squared Spearman’s correlation coefficient, and probability value.</p

    Immunohistochemical detection of NF-κB subunits in NSCLC, juxta-tumoral normal lung structures and preneoplastic lesions.

    No full text
    <p><b>(A)</b> Representative images. Images in red frames representatively display differential NF-κB subunit expression in tumor and intratumoral stroma areas. <b>(B)</b> Overall scoring of NF-κB subunit expression levels. Data presented as median with boxes indicating interquartile range and whiskers indicating 95% percentiles. ns, * and ***: P > 0.05, P < 0.05, and P < 0.001 for indicated comparisons by Friedman’s test followed by Dunn’s post-tests. <b>(C)</b> Co-expression matrixes of categorical NF-κB subunit expression levels. For this, NF-κB scores from (B) were categorized into low (0–4), intermediate (5–6), and high (7–18). ns: P > 0.05 by χ<sup>2</sup> tests followed by Fisher’s exact tests.</p

    Immunohistochemical detection of NF-κB in mouse models of NSCLC.

    No full text
    <p>NF-κB subunit expression was assessed by immunohistochemistry in urethane-induced mouse lung adenomas <b>(A and C)</b> and mutant <i>KRAS</i>-induced lung adenocarcinomas <b>(B and D)</b>. <b>(A, B)</b> Representative images. <b>(C, D)</b> Overall scoring of NF-κB subunit expression levels from four mice per group. Data presented as mean ± SD. ** and ***: P < 0.01, and P < 0.001 for the indicated color-coded subunit compared with normal bronchial and alveolar epithelium by two-way ANOVA followed by Bonferroni post-tests. Non-significant comparisons are not indicated.</p

    Association of NF-κB expression with clinical and pathologic parameters in 77 patients with NSCLC.

    No full text
    <p><b>(A)</b> NF-κB expression levels subdivided by clinical and pathological parameters. Data presented as median with boxes indicating interquartile range and whiskers indicating 95% percentiles. ns, *, and **: P > 0.05, P < 0.05, and P < 0.0501 for indicated comparisons by Wilcoxon signed rank tests or Kruskal-Wallis tests followed by Dunn’s post-tests, for two or multiple comparison groups, respectively. <b>(B)</b> Results of binary logistic regression analyses using NF-κB subunit expression scores as the input (independent variables) and dichotomized clinical and pathologic parameters as the output (dependent variables). RR, risk ratios; CI, confidence intervals; P, probability values.</p

    Association of NF-κB subunit expression with tumor-related inflammation and cellular proliferation in NSCLC.

    No full text
    <p><b>(A)</b> Representative images of hematoxylin-stained samples showing different degrees of inflammatory infiltration of stroma areas. <b>(B)</b> NF-κB subunit expression scores of tumors with varying degrees of inflammatory infiltration. Data presented as median with boxes indicating interquartile range and whiskers indicating 95% percentiles. ns, **, and ***: P > 0.05, P < 0.01, and P < 0.001 for indicated comparisons by Kruskal-Wallis tests followed by Dunn’s post-tests. <b>(C)</b> Representative images of PCNA-stained NSCLC subtype samples. <b>(D)</b> Nuclear co-localization of PCNA immunoreactivity with <i>Rel</i>B (arrows), but not with <i>Rel</i>A, was identified using dual immunostaining of samples of 10 patients (representative images shown).</p

    Schematic illustration of the main findings of the present study.

    No full text
    <p>NF-κB subunit expression levels in tumor and stroma cells of 77 patients with NSCLC are indicated by relative font size. Arrows indicate possible associations of <i>Rel</i> protein expression levels in NSCLC tumor cells with tumor-associated inflammation and cellular proliferation.</p
    corecore