11 research outputs found

    Byproducts (Flour, Meals, and Groats) from the Vegetable Oil Industry as a Potential Source of Antioxidants

    Get PDF
    The present study presents the use of photochemiluminescence assay (PCL) and 2,2 diphenyl-1-picryl-hydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), the ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) methods for the measurement of lipid-soluble antioxidant capacity (ACL) of 14 different byproducts obtained from the vegetable oil industry (flour, meals, and groats).The research showed that the analyzed samples contain significant amounts of phenolic compounds between 1.54 and 74.85 mg gallic acid per gram of byproduct. Grape seed flour extract had the highest content of total phenolic compounds, 74.85 mg GAE/g, while the lowest level was obtained for the sunflower groats, 1.54 mg GAE/g. DPPH values varied between 7.58 and 7182.53 mg Trolox/g of byproduct, and the highest antioxidant capacity corresponded to the grape seed flour (7182.53 mg Trolox/g), followed by walnut flour (1257.49 mg Trolox/g) and rapeseed meals (647.29 mg Trolox/g). Values of ABTS assay of analyzed samples were between 0 and 3500.52 mg Trolox/g of byproduct. Grape seed flour had the highest value of ABTS (3500.52 mg Trolox/g), followed by walnut flower (1423.98) and sea buckthorn flour (419.46). The highest values for FRAP method were represented by grape seed flour (4716.75 mg Trolox/g), followed by sunflower meals (1350.86 mg Trolox/g) and rapeseed flour (1034.92 mg Trolox/g). For CUPRAC assay, grape seed flour (5936.76 mg Trolox/g) and walnut flour (1202.75 mg Trolox/g) showed the highest antioxidant activity. To assess which method of determining antioxidant activity is most appropriate for the byproducts analyzed, relative antioxidant capacity index (RACI) was calculated. Depending on the RACI value of the analyzed byproducts, the rank of antioxidant capacity ranged from −209.46 (walnut flour) to 184.20 (grape seed flour). The most sensitive methods in developing RACI were FRAP (r = 0.5795) and DPPH (r = 0.5766), followed by CUPRAC (r = 0.5578) and ABTS (r = 0.4449), respectively. Strong positive correlations between the antioxidant capacity of lipid-soluble compounds measured by PCL and other methods used for determining antioxidant activity were found (r > 0.9). Analyses have shown that the different types of byproducts obtained from the vegetable oil industry have a high antioxidant activity rich in phenolic compounds, and thus their use in bakery products can improve their nutritional quality

    Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties

    No full text
    Gleditsia triacanthos is an aggressive invasive species in Eastern Europe, producing a significant number of pods that could represent an inexhaustible resource of raw material for various applications. The aim of this study was to extract cellulose from the Gleditsia triacanthos pods, characterize it by spectrophotometric and UHPLC–DAD-ESI/MS analysis, and use it to fabricate a wound dressing that is multi-functionalized with phenolic compounds extracted from the leaves of the same species. The obtained cellulose microfibers (CM) were functionalized, lyophilized, and characterized by ATR-FTIR and SEM. The water absorption and retention capacity as well as the controlled release of phenolic compounds with antioxidant properties evaluated in temporal dynamics were also determined. The antimicrobial activity against reference and clinical multi-drug-resistant Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida parapsilosis strains occurred immediately after the contact with the tested materials and was maintained for 24 h for all tested microbial strains. In conclusion, the multi-functionalized cellulose microfibers (MFCM) obtained from the reproductive organs of an invasive species can represent a promising alternative for the development of functional wound dressings with antioxidant and antimicrobial activity, as well as being a scalable example for designing cost-effective, circular bio-economy approaches to combat the accelerated spread of invasive species

    Phytostimulation and Synergistic Antipathogenic Effect of <i>Tagetes erecta</i> Extract in Presence of Rhizobacteria

    No full text
    In anticipation of the food crisis, developing innovative products and technologies to increase crop yield and quality is a necessity. In this context, the aim of this study was to develop a phytostimulant based on Tagetes erecta extract and rhizobacteria to increase the antifungal activity against phytopathogenic fungi. The hydroalcoholic extract from T. erecta flowers was characterized by UV-Vis spectrophotometric assays (total phenolic content, total flavonoids content, reducing sugar content), qualitatively by ATR-FTIR and quantitatively for individual compounds by UHPLC-HESI analysis. The antioxidant activity was evaluated and the phytostimulation capacity was done on the radish and cucumber. The variants of the concentration that stimulated the rhizobacteria (Bacillus sp.) proliferation were selected by evaluating the influence on the microbial viability in a liquid medium. The antifungal activity against fungal pathogens (Monilinia laxa, Fusarium graminearum, Aspergillus niger) was determined by reducing mycelium growth in solid and liquid media. The synergistic effect between optimal levels of rhizobacteria-containing T. erecta extract showed a significant decrease in mycelium development. Thus, PGPR strains treated with T. erecta extract could be applied as biocontrol agents against plant pathogens and stimulate vegetable seedlings

    Original Contributions to the Chemical Composition, Microbicidal, Virulence-Arresting and Antibiotic-Enhancing Activity of Essential Oils from Four Coniferous Species

    No full text
    This study aimed to establish the essential oil (EO) composition from young shoots of Picea abies, Larix decidua, Pseudotsuga menziesii, and Pinus nigra harvested from Romania and evaluate their antimicrobial and anti-virulence activity, as well as potential synergies with currently used antibiotics. The samples’ EO average content varied between 0.62% and 1.02% (mL/100 g plant). The mono- and sesquiterpene hydrocarbons were dominant in the composition of the studied EOs. The antimicrobial activity revealed that the minimum inhibitory concentration (MIC) values for the tested EOs and some pure compounds known for their antimicrobial activity ranged from 6.25 to 100 µL/mL. The most intensive antimicrobial effect was obtained for the Pinus nigra EO, which exhibited the best synergistic effect with some antibiotics against Staphylococcus aureus strains (i.e., oxacillin, tetracycline, erythromycin and gentamycin). The subinhibitory concentrations (sMIC) of the coniferous EOs inhibited the expression of soluble virulence factors (DN-ase, lipase, lecithinase, hemolysins, caseinase and siderophore-like), their efficiency being similar to that of the tested pure compounds, and inhibited the rhl gene expression in Pseudomonas aeruginosa, suggesting their virulence-arresting drug potential

    Synthesis of New Zinc and Copper Coordination Polymers Derived from Bis (Triazole) Ligands

    No full text
    Recent research has focused on molecules with different aromatic nitrogen-containing moieties coupled to a biphenyl core, as an effective approach for the assembly of coordination polymers. This study presents the synthesis and characterization of new ligands based on 1,1′-(3,3′-dimethoxy-[1,1′-biphenyl]-4,4′-diyl)bis(4-butyl-1H-1,2,3-triazole) (L1) and 1,1′-(3,3′-dimethoxy-[1,1′-biphenyl]-4,4′-diyl)bis(4-phenyl-1H-1,2,3-triazole) (L2) and their coordination polymers with Cu(II) and Zn(II). An unexpected coordination polymer with Cu(I) starting from Cu(II) was obtained in the case of the L2 ligand. The ligands and metal complexes underwent thorough characterization, including X-ray diffraction, NMR-, FTIR-, MS-spectrometry, and EPR, XPS, and TG-DTG analyses. While the ligand L2 generated a linear Cu(I) polymer, the ligand L1 formed a zigzag polymer with both copper and zinc

    Chemical and Biological Studies of <i>Achillea setacea Herba</i> Essential Oil—First Report on Some Antimicrobial and Antipathogenic Features

    No full text
    The essential oil of Achillea setacea was isolated by hydrodistillation and characterized by GC-MS. The antioxidant and antimicrobial activity of Achillea setacea essential oil was evaluated, as well as its biocompatibility (LDH and MTT methods). DPPH, FRAP, and CUPRAC methods were applied for antioxidant activity evaluation, while qualitative and quantitative assays (inhibition zone diameter, minimum inhibitory concentration, and minimum fungicidal concentration), NO release (by nitrite concentration determination), and microbial adhesion capacity to the inert substrate (the biofilm microtiter method) were used to investigate the antimicrobial potential. A total of 52 compounds were identified by GC-MS in A. setacea essential oil, representing 97.43% of the total area. The major constituents were borneol (32.97%), 1,8-cineole (14.94%), camphor (10.13%), artemisia ketone (4.70%), α-terpineol (3.23%), and γ-eudesmol (3.23%). With MICs ranging from 0.78 to 30 μg/mL, the A. setacea essential oil proved to inhibit the microbial adhesion and induce the NO release. To the best of our knowledge, the present study reports for the first time the antimicrobial activity of A. setacea EO against clinically and biotechnologically important microbial strains, such as Shigella flexneri, Listeria ivanovii, L. innocua, Saccharomyces cerevisiae, Candida glabrata, Aspergillus niger, Rhizopus nigricans, Cladosporium cladosporioides, and Alternaria alternata, demonstrating its antimicrobial applications beyond the clinical field

    Polydopamine-Assisted Surface Modification of Ti-6Al-4V Alloy with Anti-Biofilm Activity for Dental Implantology Applications

    No full text
    Coating the surfaces of implantable materials with various active principles to ensure inhibition of microbial adhesion, is a solution to reduce infections associated with dental implant. The aim of the study was to optimize the polydopamine films coating on the Ti-6Al-6V alloy surface in order to obtain a maximum of antimicrobial/antibiofilm efficacy and reduced cytotoxicity. Surface characterization was performed by evaluating the morphology (SEM, AFM) and structures (Solid-state 13C NMR and EPR). Antimicrobial activity was assessed by logarithmic reduction of CFU/mL, and the antibiofilm activity by reducing the adhesion of Escherichia coli, Staphylococcus&nbsp;aureus, and Candida albicans strains. The release of NO was observed especially for C. albicans strain, which confirms the results obtained for microbial adhesion. Among the PDA coatings, for 0.45:0.88 (KMnO4:dopamine) molar ratio the optimal compromise was obtained in terms of antimicrobial activity and cytotoxicity, while the 0.1:1.5 ratio (KMnO4:dopamine) led to higher NO release and implicitly the reduction of the adhesion capacities only for C. albicans, being slightly cytotoxic but with moderate release of LDH. The proposed materials can be used to reduce the adhesion of yeast to the implantable material and thus inhibit the formation of microbial biofilms

    <i>Salvia officinalis</i>–Hydroxyapatite Nanocomposites with Antibacterial Properties

    No full text
    In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements. The stability parameter calculated relative to double-distilled water as a reference fluid highlights the very good stability of the 7ZnHAp-SD suspension. X-ray diffraction (XRD) experiments were performed to evaluate the characteristic diffraction peak of the hydroxyapatite phase. Valuable information regarding the morphology and chemical composition of 7ZnHAp-SD was obtained via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) studies. Fourier-transform infrared spectroscopy (FTIR) measurements were performed on the 7ZnHAp-SD suspensions in order to evaluate the functional groups present in the sample. Preliminary studies on the antimicrobial activity of 7ZnHAp-SD suspensions against the standard strains of Staphylococcus aureus 25923 ATCC, Enterococcus faecalis 29212 ATCC, Escherichia coli 25922 ATCC, and Pseudomonas aeruginosa 27853 ATCC were conducted. More than that, preliminary studies on the biocompatibility of 7ZnHAp-SD were conducted using human cervical adenocarcinoma (HeLa) cells, and their results emphasized that the 7ZnHAp-SD sample did not exhibit a toxic effect and did not induce any noticeable changes in the morphological characteristics of HeLa cells. These preliminary results showed that these nanoparticles could be possible candidates for biomedical/antimicrobial applications

    Sodium bicarbonate-hydroxyapatite used for removal of lead ions from aqueous solution

    No full text
    This study reports the development of a novel biocomposite for potential applications in the environmental remediation. The hydroxyapatite/sodium bicarbonate (HAp-SB) biocomposite obtained by a cheap method could offer promising characteristics to be used in environmental applications. The obtaining of HAp-SB ceramic composites was studied with the aim of increasing the adsorption efficiency of lead ions from contaminated waters. A composite material (HAp-SB) with good crystallinity that preserves the hexagonal structure of pure hydroxyapatite was obtained. For the powder recovered after decontamination of the lead solution (PbHAp-SB), the XRD model highlighted additional maxima belonging to Ca 10 (PO 4) 5 (OH) 2 , Ca0.805Pb 4. 195 (PO 4)(OH) and PbH 2 P 2 O 7. The FTIR spectra of PbHAp-SB are similar to those of HAp-SB composites showing a broadening of the vibration peaks and a slight shift. The XPS and EDS studies illustrated the purity of the HAp-SB sample. Moreover, the presence of lead in the powder recovered after decontamination was also highlighted by XPS and EDS studies. The efficiency of HAp-SB in the adsorption of Pb 2+ ions from the contaminated solution was also highlighted by ultrasound studies using double-distilled water as the reference liquid. The adsorption kinetics were investigated with the aid of Langmuir and Freundlich theoretical models. The results demonstrated that the HAp-SB ceramic composite has a strong affinity for the adsorption of Pb 2+ ions from contaminated solutions. The removal efficiency of Pb 2+ ions was about 92% for the initial Pb 2+ concentration above 50 mg/L. The results of the cell viability and cytotoxicity studies demonstrated that HAp-SB nanoparticles did not influence negatively the HeLa cell's viability and did not induce any significant changes of the morphological features of HeLa cells after 24 h of incubation. The batch adsorption results as well as the cytotoxicity assay results suggested that the HAp-SB powder could be successfully used for the removal of Pb 2+ from contaminated water

    Multi-Level Evaluation of UV Action upon Vitamin D Enhanced, Silver Doped Hydroxyapatite Thin Films Deposited on Titanium Substrate

    No full text
    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is an important bioactive material for bone tissue reconstruction, due to its highly thermodynamic stability at a physiological pH without bio-resorption. In the present study, the Ag:HAp and the corresponding Ag:HAp + D3 thin films (~200 nm) coating were obtained by vacuum deposition method on Ti substrate. The obtained samples were exposed to different UV irradiation times, in order to investigate the UV light action upon thin films, before considering this method for the thin film’s decontamination. The effects of UV irradiation upon Ag:Hap + D3 are presented for the first time in the literature, marking a turning point for understanding the effect of UV light on composite biomaterial thin films. The UV irradiation induced an increase in the initial stages of surface roughness of Ag:HAp thin film, correlated with the modifications of XPS and FTIR signals. The characteristics of thin films measured by AFM (RMS) analysis corroborated with XPS and FTIR investigation highlighted a process of recovery of the thin film’s properties (e.g., RMS), suggesting a possible adaptation to UV irradiation. This process has been a stage to a more complicated UVA rapid degradation process. The antifungal assays demonstrated that all the investigated samples exhibited antifungal properties. Moreover, the cytotoxicity assays revealed that the HeLa cells morphology did not show any alterations after 24 h of incubation with the Ag:HAp and Ag:HAp + D3 thin films
    corecore