2 research outputs found

    Pattern formation in nanoparticle suspensions: a Kinetic Monte Carlo approach

    Get PDF
    Various experimental settings that involve drying solutions or suspensions of nanoparticles often called nano-fluids have recently been used to produce structured nanoparticle layers. In addition to the formation of polygonal networks and spinodal-like patterns, the occurrence of branched structures has been reported. After reviewing the experimental results, the work presented in this thesis relies only on simulations. Using a modified version of the Monte Carlo model first introduced by Rabani et al. [95] the study of structure formation in evaporating films of nanoparticle solutions for the case that all structuring is driven by the interplay of evaporating solvent and diffusing nanoparticles is presented. The model has first been used to analyse the influence of the nanoparticles on the basic dewetting behaviour, i.e., on spinodal dewetting and on dewetting by nucleation and growth of holes. We focus, as well, on receding dewetting fronts which are initially straight but develop a transverse fingering instability. One can analyse the dependence of the characteristics of the resulting branching patterns on the driving effective chemical potential, the mobility and concentration of the nanoparticles, and the interaction strength between liquid and nanoparticles. This allows to understand the underlying fingering instability mechanism. We describe briefly how the combination of a Monte Carlo model with a Genetic Algorithm (GA) can be developed and used to tune the evolution of a simulated self-organizing nanoscale system toward a predefined nonequilibrium morphology. This work has presented evolutionary computation as a method for designing target morphologies of self-organising nano-structured systems. Finally, highly localised control of 2D pattern formation in colloidal nanoparticle arrays via surface inhomogeneities created by atomic force microscope (AFM) induced oxidation is presented and some simulations are shown. Furthermore, the model can be extended further, and by including the second type of nanoparticle, the binary mixture behaviour can be captured by simulations. We conclude that Kinetic Monte Carlo simulations have allowed the study of the processes that lead to the production of particular nanoparticle morphologies

    Modelling approaches to the dewetting of evaporating thin films of nanoparticle suspensions

    Get PDF
    We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions (nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled transport and phase changes. These approaches range from microscopic discrete stochastic theories to mesoscopic continuous deterministic descriptions. In particular, we describe (i) a microscopic kinetic Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model. Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched structures resulting from the dewetting of an ultrathin ‘postcursor film’ that remains behind a mesoscopic dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative dewetting front, which results in highly branched fingering structures. The subtle interplay of decomposition in the film and contact line motion is discussed. Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ coupled evolution equations for the film thickness profile and mean particle concentration. The model is used to discuss the self-pinning and depinning of a contact line related to the ‘coffee-stain’ effect. In the course of the review we discuss the advantages and limitations of the different theories, as well as possible future developments and extensions
    corecore