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Abstract

We review recent experiments on dewetting thin films of evaporating colloidal nanoparticle suspensions

(nanofluids) and discuss several theoretical approaches to describe the ongoing processes including coupled

transport and phase changes. These approaches range from microscopic discrete stochastic theories to

mesoscopic continuous deterministic descriptions. In particular, we focus on (i) a microscopic kinetic

Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film model.

Models (i) and (ii) are employed to discuss the formation of polygonal networks, spinodal and branched

structures resulting from the dewetting of an ultrathin ‘postcursor film’ that remains behind a mesoscopic

dewetting front. We highlight, in particular, the presence of a transverse instability in the evaporative

dewetting front which results in highly branched fingering structures. The subtle interplay of decomposition

in the film and contact line motion is discussed.

Finally, we discuss a simple thin film model (iii) of the hydrodynamics on the mesoscale. We employ

coupled evolution equations for the film thickness profile and mean particle concentration. The model is

used to discuss the self-pinning and de-pinning of a contact line related to the ‘coffee-stain’ effect.

In the course of the review we discuss the advantages and limitations of the different theories, as well as

possible future developments and extensions.

The paper is published in: J. Phys.-Cond. Mat. 21, 264016 (2009),

in the Volume “Nanofluids on solid substrates” and can be obtained at

http://dx.doi.org/10.1088/0953-8984/21/26/264016
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I. INTRODUCTION

The patterns formed in dewetting processes have attracted strong interest since Reiter analysed the

process quantitatively in the early nineties. In these experiments, that proved to be a paradigm in

our understanding of dewetting, a uniform thin film of polystyrene (tens of nanometers thick) is

deposited on a flat silicon oxide substrate is brought above the glass transition temperature. The

film ruptures in several places, forming holes which subsequently grow, competing for space. As a

result, a random polygonal network of liquid rims emerges. The rims may further decay into lines

of small drops due to a Rayleigh-type instability [1–3]. The related problems of retracting contact

lines on partially wetting substrates and the opening of single holes in rather thick films have also

been studied [4, 5].

Subsequent work has mainly focused on many different aspects of the dewetting process for simple

non-volatile liquids and polymers (for reviews see Refs. [6–8]). All stages of the dewetting of a

film are studied: the initial film rupture via nucleation or a surface instability (called spinodal

dewetting) [1, 9–13], the growth process of individual holes [14–16], the evolution of the resulting

hole pattern [3, 13], and the stability of the individual dewetting fronts [17–19]. We note in

passing, that descriptions of dewetting patterns may also be found in historic papers, particularly

for the dewetting of a liquid film on a liquid substrate. Tomlinson [20, footnote 18 on p. 40]

considered turpentine on water and Marangoni [21, p. 352f] oil on water.

More recently, interest has turned to the dewetting processes of solutions and suspensions. How-

ever, these systems have not yet been investigated in any great depth. Such systems are compli-

cated because their behaviour is determined by the interplay between the various solute (or colloid)

and solvent transport processes. Furthermore, the solvents that are used often evaporate, i.e., one

has to distinguish between ‘normal’ convective dewetting and evaporative dewetting. A number

of experiments have been performed employing (colloidal) solutions of polymers [22–25], macro-

molecules like collagen and DNA [26–31] and nanoparticles [32–40]. The latter are sometimes

referred to as ‘nanofluids’. The initial focus of much of the research in the field has been on

investigating the structures that are formed which are similar to the ones observed in the ‘classi-

cal’ dewetting of non-volatile liquids. Labyrinthine structures and polygonal networks result from

spinodal dewetting and heterogeneous nucleation and growth, respectively. They are ‘decorated’

with the solute and therefore conserve the transient dewetting pattern as a dried-in structure when

all the solvent has evaporated [28, 34]. The picture is, however, not complete. The solute may
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also shift the spinodal and binodal lines as compared to the locations of these lines in the phase

diagram for the pure solvent [41]. As a consequence, the solute concentration influences the hole

nucleation rate. More importantly, the solute particles may also destabilise the dewetting fronts.

As a result, one may find strongly ramified structures in all three systems [23, 25, 40, 42]. A

selection of images exhibiting some of the possible structures is displayed in Fig.1.

For volatile solvents, the contact lines retract even for wetting fluids. It has been found that such

evaporatively receding contact lines may deposit very regular line or ring patterns parallel to the

moving contact line [24, 43]. The deposition of a single ring of colloids from a evaporating

drop of colloidal suspension is well known as the ‘coffee stain effect’ [44]. Detailed investiga-

tions reveal the emergence of rich structures including multiple irregular rings, networks, regular

droplet patterns, sawtooth patterns, Sierpinski carpets, and – in the case of DNA – liquid crys-

talline structures [22, 30, 45–49]. The deposition of regularly spaced straight lines orthogonal to

the moving contact line has also been reported [50]. Droplet patterns may as well be created em-

ploying solvent-induced dewetting of glassy polymer layers below the glass transition temperature

[51–53].

Note that the dewetting of pure volatile liquids has also been studied experimentally [54] and

theoretically [55–58]. In this case, different contact line instabilities have been observed for evap-

orating liquid drops [59, 60].

In the present article we review and preview the experiments and in particular the various mod-

elling approaches for dewetting suspensions of (nano-)particles in volatile partially wetting sol-

vents. After reviewing the basic experimental results in Section II, we discuss in Section III sev-

eral theoretical approaches. In particular, we present a kinetic Monte Carlo model in Section III A,

a dynamic density functional theory in Section III B, and a thin film evolution equation in Sec-

tion III C. Finally, we conclude in Section IV by discussing advantages and shortcomings of the

individual approaches and future challenges to all of them.

II. EXPERIMENT WITH NANOPARTICLE SOLUTIONS

We focus on experiments that use monodisperse colloidal suspensions of thiol-passivated gold

nanoparticles in toluene [33, 34, 37–40, 61]. The gold core of 2 – 3 nm diameter is coated by a layer

of alkyl-thiol molecules. The length of the carbon backbone of the thiol used in the experiments

ranges from 6 to 12 carbon atoms (C6 to C12) [40]. By varying the chain length, one can control
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(a) (b)

(c) (d)

FIG. 1: (Colour online) Images of strongly ramified dewetting structures obtained using Atomic Force

Microscopy in the case of (a) an aqueous collagen solution on graphite (courtesy of U. Thiele, M. Mertig

and W. Pompe; see also Ref. [42]. Image size: 5µm×5µm); (b) poly(acrylic acid) in water spin-coated onto

a polystyrene substrate (reprinted with permission of John Wiley & Sons, Inc. from Ref. [23]; copyright

John Wiley & Sons, Inc. 2002; Image size: 2.5µm×2.5µm); and in both (c) and (d), a solution of gold

nanoparticles in toluene, spin-coated onto native oxide terminated silicon substrates (scale bars given in

panels). In all the images the lighter areas correspond to the deposited solute and the dark areas to the

empty substrate.
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to a certain extent the particle-particle attraction. Normally, the solution is deposited on to a plain

silicon substrate that is covered by the native oxide layer only [34]. However, one may locally

change the wetting behaviour of the solvent by further oxidising the substrate [38]. By adding

excess thiol one can also vary the properties of the solvent [40].

Two different procedures are employed for the deposition of the solution on to the substrate: spin-

coating or a meniscus technique [61, 62]. The choice is important as it strongly influences the

evaporation rate and, as a result, the pattern formation process. When using spin-coating, one finds

that directly after deposition, evaporation competes with dewetting until all the solvent has evapo-

rated. The resulting deposits of nanoparticles are imaged by atomic force microscopy (AFM). For

spin-coated films, the evaporation rate is high and structuring is normally finished before the spin-

coater is stopped. Conversely, the solvent evaporation rate is strongly decreased when employing

the meniscus technique [61], i.e., by depositing a drop of solution on a Teflon ring that is wetted by

the solvent. This allows for a better control of the process and enables the use of contrast-enhanced

microscopy to observe the dewetting process in situ [40]. All pattern formation is confined to the

region of the receding contact line of toluene, silicon and air. With both techniques one may find

mono-modal or bi-modal polygonal networks [34], labyrinthine spinodal structures, or branched

patterns (see Fig. 1). The meniscus technique allows for the study of branched structures in a

more controlled manner. The work in Ref. [40] indicates that fingering strongly depends on the

interaction strength of the particles, i.e., on the chain length of the thiol molecules coating the gold

cores. For short chains (C5 and C8) no formation of branched structures is observed. At similar

concentrations, well-developed branched structures are formed for longer chains (C10 and C12).

For even longer chains (C14), however, one again finds less branching. It also depends on the

amount of excess thiol in the solvent (for details see Ref. [40]).

When following the evolution of the branched patterns in situ (see the complementary video

material of Ref. [40]), one clearly observes that different processes occur on different lenght

scales. First, a macroscopic dewetting front recedes, leaving behind a seemingly dry substrate.

The macroscopic front can be transversely unstable resulting in large-scale (> 100µm) strongly

anisotropic fingered structures. For fronts that move relatively quickly these macroscopic struc-

tures cover all the available substrate. However, when at a later stage the macroscopic front be-

comes slower, those fingers become scarce and ‘macroscopic fingering’ finally ceases. At this

stage it is possible to appreciate that the seemingly dry region left behind by the front is not at all

dry, but covered by an ultrathin ‘postcursor’ film that is itself unstable. The thickness of this film
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is similar to the size of the nanoparticles. At a certain distance from the macroscopic front, the

ultrathin film starts to evolve a locally isotropic pattern of holes. The holes themselves grow in an

unstable manner resulting in an array of isotropically branched structures as shown, e.g., above in

Fig. 1. This indicates that at least some of the patterns described in the literature may have arisen

from processes in similar ultrathin ‘postcursor’ films.

The existence of the ultrathin ‘postcursor’ film is an experimental finding that can be drawn on

when choosing a theoretical approach to account for the pattern formation (see below). Note how-

ever, that at the moment there exists no explanation for its existence. A possible hypothesis is

that the substrate strongly attracts the nanoparticles. As a result they form a dense suspension

layer having a thickness roughly equal to the diameter of the nanoparticles. The observed meso-

scopic dewetting front then actually correspond to an autophobic dewetting of a low concentration

suspension from the higher concentration suspension on the surface of the substrate.

III. MODELLING APPROACHES

Models of dewetting thin films of pure liquids or polymers are often based on thin film hydro-

dynamics. Starting from the Stokes equations, together with continuity and boundary conditions

at the substrate and free surface, one applies a long-wave approximation (assuming small surface

slopes and contact angles) [8, 63] and obtains a non-linear evolution equation for the film thickness

profile h(x, y, t). In the case of volatile liquids one finds [55–58, 64]

∂th = ∇ ·
[
Qc∇

δF

δh

]
− Qe

δF

δh
, (1)

with the mobility functions Qc(h) = h3/3η ≥ 0 (assuming Poiseuille flow in the film and no slip

at the substrate; η is the dynamic viscosity) and Qe ≥ 0 for the convective and evaporative part

of the dynamics, respectively. Qe is a rate constant that can be obtained from gas kinetic theory

or from experiment [57]. Note that Eq. (1) only applies if the pressure in the vapour above the

film is close to the saturation pressure. For alternative expressions that are used to describe the

non-conserved evaporative dynamics see, e.g., Refs. [56, 57, 65–69]. Finally, ∇ = (∂x, ∂y), and

∂t, ∂x and ∂y denote partial derivatives w.r.t. time and the coordinates.

Focusing on the influence of capillarity and wettability only, the energy functional F [h] is given

by

F [h] =

∫
dx

∫
dy
[γ

2
(∇h)2 + f(h)− µh

]
(2)

7



where γ is the liquid-gas surface tension and f(h) is a local free energy term that describes the

wettability of the surface. Since µ corresponds to a chemical potential, the term µhmay either bias

the system towards the liquid or towards the gas state. The variation of F w.r.t. h gives the pressure.

It contains the curvature (Laplace) pressure −γ∆h and the disjoining pressure Π(h) = −∂hf(h).

Many different forms for the latter are in use (see, e.g., Refs. [4, 8, 63, 70–73]).

For the present system a thin film description using Eq. (1) is not appropriate because the nanopar-

ticles are not taken into account. However, under certain conditions one can augment equation (1)

for the evolution of the film thickness by coupling it to an equation for the evolution of the mean

particle concentration. The resulting model is able to describe the behaviour of an evaporating so-

lution on the meso- and macroscale. Such an approach is briefly discussed below in Section III C.

We should expect such a model to describe the mesoscopic dewetting front discussed above. How-

ever, the theory is less suited to a description of the dewetting dynamics of the ultrathin postcursor

film.

The dewetting of the ultrathin film of highly concentrated suspension may be described by a dis-

crete stochastic model such as, for instance, a kinetic Monte Carlo (KMC) model based solely on

evaporation/condensation dynamics of the solvent and diffusion of the solute [35, 39, 41]. The va-

lidity of this strong assumption regarding the relevant transport processes can be confirmed from

an estimate based on Eq. (1): The pressure p = δF/δh drives convection and evaporation. The

convective mobility is proportional to h3, i.e., it is large for thick films but decreases strongly with

reduced film thickness. The evaporative mobility, however, is a constant, implying that evapora-

tion will dominate below a certain (cross-over) thickness. For the parameter values of Ref. [57]

and a small contact angle (≈ 0.01), the cross-over thickness is in the range of 1-5 nanometers.

This estimate justifies the neglect of convective transport in a description of the postcursor film

and may explain why one has such good agreement between the experimentally observed patterns

and the patterns obtained from a purely two-dimensional (single layer) kinetic Monte Carlo model

[35]. We introduce the KMC model below in Section III A.

In several respects, however, the kinetic Monte Carlo model is rather simplistic, limiting its po-

tential applications. For instance, the thermodynamic chemical potential as well as any wetting

interaction of the solvent with the substrate are collected in a single parameter – an effective chem-

ical potential. This implies that any influence of a disjoining pressure is ‘smeared out’ over the

whole system and that no distinction between the short- and the long-range parts of the disjoining

pressure is possible. It is furthermore based on the assumption that evaporation/condensation is
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the dominant dynamic process, but does not allow one to probe this assumption. In Section III B

we show how one may develop a dynamical density functional theory (DDFT) that describes the

system at a similar level to the KMC. However, the DDFT may also be easily extended to include

other effects such as fluid diffusion, that the KMC does not incorporate.

A. Kinetic Monte Carlo model

The kinetic Monte Carlo model for two-dimensional dewetting nanofluids [33] was first proposed

in Ref. [35] and extended to include next-nearest neighbour interactions in [37]. The two key

assumptions used are: (i) the relevant processes can be mapped on to a two-dimensional lattice

gas model, thereby neglecting continuous changes in the thickness of the evaporating film, and (ii)

all relevant dynamics results from diffusing nanoparticles and evaporating/condensing solvent.

The model builds on an Ising-type model for the liquid-gas phase transition. The surface is divided

up into a regular array of lattice sites whose size is dictated by the nanoparticles. One then con-

siders each lattice site to be occupied either by a nanoparticle, liquid or vapour. This effectively

maps the system onto a two-dimensional two-component lattice gas having two fields n and l. The

resulting three possible states of a cell are: liquid (l = 1, n = 0), nanoparticle (l = 0, n = 1),

and vapour (l = 0, n = 0, i.e., cell empty). The energy of an overall configuration is given by the

hamiltonian

E = −εnn
2

∑
<ij>

ninj −
εnl
2

∑
<ij>

nilj −
εll
2

∑
<ij>

lilj − µ
∑
i

li (3)

where
∑

<ij> denotes a sum over nearest neighbour pairs and εll, εnn and εnl are the liquid-liquid,

particle-particle and liquid-particle interaction energies, respectively. Fixing the three interaction

strength parameters εll, εnn, εnl and the effective chemical potential µ determines the equilibrium

state of the system. We choose εll as unit of energy – i.e. we set εll = 1.

The hamiltonian determines the equilibrium state and the energy landscape of the system. How-

ever, as the system ‘dries in’ during the course of the solvent evaporation, the final nanoparticle

configurations do not necessarily represent equilibrium structures. This implies that the system

dynamics is of paramount importance. It is determined by the possible Monte Carlo moves, their

relative frequencies, and the probabilities for their acceptance. Two types of moves are allowed: (i)

evaporation/condensation of liquid and (ii) diffusion of nanoparticles within the liquid. A mobility

M corresponds to the ratio of cycles of particle and solvent moves and reflects the physical ratio of
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time scales for evaporation and diffusion. A large mobility M indicates fast diffusion as compared

to evaporation. A trial move is accepted with the probability pacc = min[1, exp(−∆E/kT )] where

k is the Boltzmann constant, T the temperature and ∆E is the change in energy resulting from the

potential move. Note that particles are only allowed to move into wet areas of the substrate, i.e.,

onto cells with l = 1. This models zero diffusivity of the particles on a dry substrate. The replaced

liquid fills the site left by the nanoparticle.

Without nanoparticles, the behaviour of the model is well known as it reduces to the classical

two-dimensional Ising model [74]. For kT < kTc ≈ 0.567 liquid and vapour coexist when µ =

µcoex = −2. For µ > −2 [µ < −2] eventually the liquid [vapour] dominates. A straight liquid-

gas interface will recede [advance] for µ < −2 [µ > −2], i.e. one finds evaporative dewetting

[wetting] fronts. If one starts, however, with a substrate covered homogeneously by the liquid,

for µ < −2 the film will dewet via a nucleation or spinodal-like process. If the nanoparticles are

present, they form dried-in structures when all the liquid evaporates. The final structures do not

normally change any further – at least on short time scales. However, if the liquid wets the particles

(i.e. is attracted to the particles), over long times there might be a coarsening of the structures,

facilitated by the adsorbed liquid. The dried-in patterns depend on the particular pathway taken by

the evaporative dewetting process. They range from labyrinthine to polygonal network structures

or holes in a dense particle layer. Some typical patterns are displayed in Fig. 2, for cases when

the average surface coverage of the nanoparticles ρavn = 0.2. Panels (a) and (b) result from a

spinodal-like and nucleation and growth process, respectively. At first sight they look very similar

to the patterns seen for the pure solvent and one might argue that the particles solely act as passive

tracers and preserve the transient volatile dewetting structures of the solvent. This was suggested

in Refs. [26–28] for dewetting collagen solutions. However, panels (c) and (d) indicate that the

particles may at times play a rather more significant role. When the diffusion of the particles is

slow, the evaporative dewetting fronts become transversely unstable and may result in strongly

ramified patterns. This instability is caused by the nanoparticles. The lower their mobility, the

stronger the fingering effect, i.e., there are more fingers in (c) than in (d) because in the latter the

mobility is larger.

The front instability is intriguing as it results in strongly branched structures. As the dewetting

front moves, new branches are continuously created and existing branches merge at the moving

contact line. However, the mean finger number in the streamwise direction of the resulting ramified

pattern is a constant. This behaviour is in contrast to the front instabilities found for dewetting
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a

d

b

c

FIG. 2: Typical KMC results for the final dried-in nanoparticle structures resulting from the evaporative

dewetting processes of nanoparticle solutions (nanofluids) in the case of (a) a spinodal-like process at µ =

−2.55, (b) nucleation and growth of holes at µ = −2.3, (c) unstable fronts at µ = −2.3 and low mobility

M = 5, and (d) unstable fronts at µ = −2.3 and medium mobility M = 10. The starting configuration in

(a) and (b) is a homogeneous liquid film with uniformly distributed particles whereas in (c) and (d) a hole

at the center is nucleated ‘by hand’. The remaining parameters are (a,b) M = 50, εnl = 2.0, εnn = 1.5,

ρavn = 0.2, kT = 0.3, MC steps= 500, domain size 1200 × 1200; (c,d) εnn = 2.0, εnl = 1.5, ρavn = 0.2,

kT = 0.2, MC steps= 3000, domain size 1200 × 1200. Lattice sites occupied by particles are coloured

black, and the empty sites are coloured white.
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polymers which only result in fingers without side-branches [75] or fields of droplets left behind

[18].

A quantitative analysis shows that the mean number of fingers depends only very weakly on the av-

erage concentration of the nanoparticles ρavn ; only the mean finger width increases with increasing

concentration. However, decreasing the mobility (i.e., decreasing the diffusivity of the particles)

leads to a much denser finger pattern and also causes the front instability to appear at an earlier

stage, i.e., when the front instability is in its initial linear regime, it has a higher growth rate and a

smaller characteristic wavelength (cf. Fig. 2(c) and (d)). Decreasing the effective chemical poten-

tial (increasing its absolute value) has a similar but less strong effect. For details see [41]. These

findings lead to the conclusion that the determining factor for the front instability is the ratio of

the time-scales of the different transport processes. In particular, the front becomes more unstable

when the velocity of the dewetting front increases as compared to the mean diffusion velocity of

the nanoparticles.

If the particle diffusivity is low, the front ‘collects’ the particles, resulting in a build up of the

particles at the front that itself is slowed down. This makes the front unstable and any fluctuation

along the front will trigger a transverse instability that results in an evolving fingering pattern. This

happens even when the particle-liquid and particle-particle attractive interactions do not favour

clustering (i.e. demixing of the liquid and the nanoparticles). In this regime, the instability is a

purely dynamic effect and energetics plays no role in determining the number of fingers. We call

this the ‘transport regime’.

To illustrate the influence of energetics (characterized by the interaction parameters εij) on finger-

ing in Fig. 3 we display the dependence of the mean finger number on particle-liquid interaction

strength εnl. For εnl ≥ 1.5 the mean finger number < f > is nearly constant; this is the trans-

port regime. However, on decreasing εnl below 1.5, we observe a marked increase in the value

of < f >, indicating that energy plays an important role in determining the number of fingers in

this regime. In this parameter range, demixing of particles and liquid occurs at the moving front

and increases its transverse instability. In this ‘demixing regime’, the wavelength of the fingering

instability is determined by the dynamics and the energetics of the system. Decreasing εnl further

(below 1.4 in Fig. 3) one first observes in regime (iii) a slight decrease in the average finger num-

ber. This is a geometric effect resulting from our one-dimensional finger counting routine: The

fingers increasingly break up and the dried-in pattern looks progressively isotropic. In regime (iv),

the measure 〈f〉 does not represent a finger number but instead indicates a decrease in the typical
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distance between particle clusters resulting from the demixing process that occurs already in the

bulk liquid and is not related to the front instability at all. Note that one finds a similar sequence

of regimes (i) to (iv) when increasing the particle-particle interaction strengths for fixed εnl (see

Ref. [41]) for further details.

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
εnl

0

5

10

15

20

25

<f
>

(i)(ii)(iii)(iv)

FIG. 3: (Colour online) Dependence of the mean finger number left behind by the unstable dewetting

front on the particle-liquid interaction strength εnl. The regions marked (i) to (iv) are discussed in the

main text. The insets display typical snapshots obtained in the four different regions. Particles are black,

liquid is grey (green online) and the empty substrate is white. The remaining parameters are kT = 0.2,

M = 20, µ = −2.2, ρavn = 0.1, εnn = 2.0, domain size 1200 × 1200. For the insets, from left to right,

εnl = 1.2, 1.4, 1.45, 1.8.

We note also that the fingering process may be viewed as self-optimising the front motion – i.e.

the front keeps its average velocity constant by expelling particles into the fingers. A similar effect

exists for dewetting polymer films [18], where liquid is expelled from the growing moving rim

which collects the dewetted polymer. There, the surplus liquid is left on the surface as a droplet

pattern.

The kinetic Monte Carlo model is a very useful tool that helps one to understand the pattern

formation in drying nanoparticle suspensions. One has, however, to keep in mind the restrictions
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on the model (see above). The purely two-dimensional character of the KMC was extended to

a ‘pseudo three-dimensional’ one by making the effective chemical potential dependent on the

mean liquid coverage [38]. As the latter is related to a mean film thickness, this corresponds to

the introduction of a ‘global’ thickness-dependent disjoining pressure into the evaporation term

without an explicit consideration of a film thickness. The amended model can reproduce bimodal

structures that are beyond the scope of the purely two-dimensional model [38, 39]. Fully three-

dimensional models are also discussed in the literature [76, 77].

B. Dynamical Density Functional theory

The limitations of the kinetic Monte Carlo model introduced in the previous Section are related

to its character as a two-dimensional lattice gas with only three states: gas, liquid or particle.

This implies that (i) no liquid can be transported to a site on the surface already filled with liquid,

i.e., diffusion of the liquid can not be incorporated in a sensible way and (ii) one is not able to

distinguish between the influence of the short- and the long-range parts of the interactions with the

substrate, as all such interactions are absorbed into the effective chemical potential.

However, using dynamical density functional theory (DDFT) [78–83] one can develop a model

for the processes in the ultrathin postcursor film without these limitations, although here we limit

ourselves to developing the theory at the level of the KMC and solely discuss how to extend it to

incorporate the influence of the liquid diffusion over the surface. Such a DDFT model describes

the coupled dynamics of the density fields of the liquid ρl and the nanoparticles ρn. The densities

ρl and ρn are defined as the probabilities of finding a given lattice site on the surface to be occupied

by a film of liquid or by a nanoparticle, respectively. Note that the probability densities correspond

to number densities as we use the lattice spacing σ = 1 as our unit of length.

To develop the DDFT, one must first derive the underlying free energy functional F [ρl, ρn], and

secondly, devise dynamical equations for both density fields that account for the conserved and the

non-conserved aspects of their dynamics, i.e., transport and phase change processes, respectively.

For a system governed by the hamiltonian (3), we may construct a mean-field (Bragg-Williams)

approximation for the free energy of the system [78, 84] which contains an entropic contribution

and contributions from the interactions between the different species (nanoparticles and liquid).

The free energy is a semi-grand free energy, since the liquid is treated grand canonically (it is

coupled to a reservoir with chemical potential µ), whereas the nanoparticles are treated in the
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canonical ensemble. The free energy functional is first defined on the original KMC lattice. How-

ever, after re-writing the interaction terms employing gradient operators [78] one finally obtains

the free energy functional for a continuous system

F [ρl, ρn] =

∫
dr
[
f(ρl, ρn) +

εll
2

(∇ρl)2 +
εnn
2

(∇ρn)2 + εnl(∇ρn) · (∇ρl)− µρl
]
, (4)

where

f(ρl, ρn) = kT [ρl ln ρl + (1− ρl) ln(1− ρl)]

+ kT [ρn ln ρn + (1− ρn) ln(1− ρn)]

− 2εllρ
2
l − 2εnnρ

2
n − 4εnlρnρl. (5)

Since the liquid may evaporate from the surface into the vapour above the surface, µ is the (true)

chemical potential of this reservoir and determines the rate of evaporation [condensation] from

[to] the surface. Note that normally a free energy of the form in Eq. (4) is obtained by making a

gradient expansion of the free energy functional of a continuous system [84]. However, here we

have made the mapping from the free energy of the lattice KMC system.

The chemical potential for the nanoparticles may be determined from the functional derivative

µn = δF [ρn, ρl]/δρn(r). In equilibrium it is constant throughout the system, but it may vary

spatially in a non-equilibrium system, i.e., µn = µn(r, t). We assume that the dynamics of the

nanoparticles is governed by the thermodynamic force ∇µn – i.e. that the nanoparticle current

is j = −Mnρn∇µn, where Mn(ρl) is a mobility coefficient that depends on the local density of

the liquid. Combining this expression for the current with the continuity equation, we obtain the

following evolution equation for the nanoparticle density profile

∂ρn
∂t

= ∇ ·
[
Mnρn∇

δF [ρn, ρl]

δρn

]
. (6)

Note that this equation of motion may also be obtained by assuming that the nanoparticles have

over-damped stochastic equations of motion [80–83]. Here, we assume that Mn(ρl) = αΘs(ρl −

0.5), where Θs(x) is a continuous function that switches smoothly from the value 0 to the value

1 at x = 0 (i.e. it is essentially a smooth analogue of the Heaviside function). This ensures that

the nanoparticles are immobile when the local liquid density is small (dry substrate) and have a

mobility coefficient α when ρl is high (wet substrate).

For the evolution of the liquid density distribution we assume that the liquid is able to evaporate

from the surface into the vapour (reservoir) above the surface (non-conserved dynamics) and may
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FIG. 4: (Colour online) Density profiles for the situation where the substrate is covered by nanoparticles

with average density ρavn = 0.3. The top row are the nanoparticle density profiles and the bottom row are

the corresponding liquid density profiles at the times t/tl = 8 (left) and 80 (right), where tl = 1/kTMnc
l σ2.

The parameters are kT/εll = 0.8, εnl/εll = 0.6, εnn = 0, α = 0.4Mnc
l σ4, M c

l = 0, ρl(t = 0) = 0.9 ± ξ

(where ξ represents white noise of amplitude 0.05) and (µ−µcoex)/kT = −0.88, where the liquid exhibits

spinodal decomposition-evaporation.

also diffuse over the substrate (conserved dynamics). The conserved part is treated along the lines

developed above for the nanoparticles. For the non-conserved part we assume a standard form

[85], i.e., the change in time of ρl is proportional to −(µsurf(r, t) − µ) = −δF [ρn, ρl]/δρl(r)

where µsurf(r, t) is the local chemical potential of the liquid at the point r on the surface at time t.

This gives the evolution equation for the liquid density

∂ρl
∂t

= ∇ ·
[
M c

l ρl∇
δF [ρn, ρl]

δρl

]
−Mnc

l

δF [ρn, ρl]

δρl
, (7)

where we assume that the coefficients M c
l and Mnc

l are constants.
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FIG. 5: (Colour online) Density profiles for the situation where the substrate is covered by nanoparticles

with average density ρavn = 0.3 and with the liquid excluded from the region y < 0. The top row shows

the nanoparticle density profiles and bottom row the corresponding liquid density profiles at the times

t/tl = 1000 (left), 10000 (middle) and 30000 (right), where tl = 1/kTMnc
l σ2. The parameters are

kT/εll = 0.8, εnl/εll = 0.6, εnn = 0, α = 0.2Mnc
l σ4, M c

l = 0, ρl(t = 0) = 0.9 ± ξ (where ξ represents

white noise of amplitude 0.05) and (µ− µcoex)/kT = −0.78.

This theory allows us to study the time evolution of the evaporating film of nanoparticle suspension

without some of the restrictions of the kinetic Monte Carlo model. Here, however, we illustrate its

application in similar parameter regimes as used above for the KMC. We focus on two examples:

(i) the spinodal dewetting of a initially flat film of nanoparticle suspension characterised by con-

stant ρl and ρn (Fig. 4); and (ii) the retraction of a dewetting front that is unstable with respect to

a fingering instability (Fig. 5).

Fig. 4 presents two pairs of snapshots from a purely evaporative dewetting process deep inside the

parameter region of the phase diagram where spinodal dewetting occurs. For small times the film

becomes unstable showing a typical spinodal labyrinthine pattern with a typical wavelength. The

nanoparticles concentrate where the remaining liquid is situated. However, they are ‘slow’ in their

reaction: when ρl already takes values in the range 0.08 – 0.83, the nanoparticle concentration

has only deviated by about 25% from its initial value. The film thins strongly forming many
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small holes. The competition for space results in a fine-meshed polygonal network of nanoparticle

deposits. The concentration of particles is much higher at the network nodes – an effect that can

not been seen within the KMC model. As the particles attract the liquid there remains some liquid

on the substrate where the nanoparticles are.

Fig. 5 gives snapshots of the evolution of a fingering instability for a retracting dewetting front.

At early times the straight front shows a rather short-wave instability, about 16 wiggles can be

seen. However, they are only a transient: the finger pattern coarsens rapidly till only about 7

fingers remain. The fingering then becomes stationary, i.e., just as in the KMC, the mean finger

number remains constant, although new branches are continuously created and old branches join

each other. In general, the results on fingering agree well with results obtained using the KMC

model [41]. From this we conclude that jamming of discrete particles is not a necessary factor

for causing the instability, since the fingering is seen here in a continuum model with a diffusion

constant that is independent of the nanoparticle concentration. The DDFT is better suited than the

KMC for investigations of the early instability stages: they are more easy to discern without the

discrete background noise of the KMC. Furthermore, one may perform a linear stability analysis of

the one-dimensional undisturbed streamwise front profiles with respect to transverse perturbations

(in analogy to the approach used in Refs. [19, 86, 87]).

C. Thin film hydrodynamics

The previous two sections focused on two approaches to describe the experimentally observed

patterning dynamics in the ultrathin postcursor film left behind by a mesoscopic receding dewet-

ting front. Although both the kinetic Monte Carlo model and the dynamical density functional

theory are able to describe well the processes in the ultrathin film, they can not be employed to

describe mesoscale hydrodynamics. A relatively simple model for the latter can be derived in the

framework of a long-wave or lubrication equation [8, 63]. We will illustrate here the approach

by considering an isothermal situation where the nanoparticles are not surface active, i.e., they do

not act as surfactants. For a model incorporating the effects of latent heat generation and surface-

active particles resulting in thermal and solutal Marangoni stresses, see Ref. [88]. A description of

spreading particle solutions incorporating a structural disjoining pressure has also been considered

[89]. For related work on particle-laden film flow on an incline see Refs. [90, 91].

One starts from the Stokes equations, together with continuity, no-slip boundary conditions at the
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substrate and force equilibria at the free surface, and applies a long-wave approximation. Under

the assumption that concentrations equilibrate rapidly over the film thickness, we obtain coupled

non-linear evolution equations for the film thickness profile h(x, t) and the amount of nanoparticles

per unit length hp = φh, where φ is the volume concentration of the nanoparticles. Note, that hp

corresponds to the local thickness of the nanoparticle layer when all the solvent is evaporated. The

resulting evolution equation for the film thickness is Eq. (1) above and focusing on the influence

of particle-independent capillarity and wettability only, the energy functional F [h] is given by

Eq. (2) above. Note that the viscosity η depends on the particle concentration. Following Refs.

[88, 89, 91, 92] we use the Quemada law for dense suspensions [93–95]

η(φ) = η0

(
1− φ

φc

)−2

(8)

where φc = 0.64 corresponds to random close packing of spherical particles. For the nanoparticle

volume per length hp = φh one obtains the following evolution equation:

∂t(φh) = ∇ ·
[
φQc∇

δF

δh

]
+∇ · [D(φ)h∇φ] , (9)

where the particle concentration dependent diffusion coefficientD(φ) is related to the viscosity by

the Einstein relation D(φ) = kT/6πRη(φ), where R is the radius of the nanoparticles [96].

We illustrate results obtained employing this thin film theory using the single example of a re-

ceding dewetting front for a partially wetting film. We use the disjoining pressure and material

constants for the liquid considered in Ref. [57], where the evaporative and convective dewetting

of a film of volatile liquid is studied. We add, however, the nanoparticles to the system. The

expression that we employ for the local free energy term in Eq. (2) is:

f(h) =
SLWd

2
0

h2
+ SP exp

(
d0 − h
l0

)
, (10)

where the parameters characterising the interaction between the liquid film and the surface are

the apolar and polar spreading coefficients SLW and SP , respectively, the Debye length l0 and the

Born repulsion length d0 [57]. The resulting disjoining pressure Π = −∂hf(h) allows for a stable

precursor film (thickness hprecursor) and also has a second (larger) thickness (h0) that corresponds

to a secondary minimum of the underlying energy functional. See Refs. [11, 97] for studies of

film and drop states for similar disjoining pressures. Our results are calculated for a system where

the profiles only vary in one Cartesian direction (x), corresponding to a straight dewetting front.

However, our results may also be interpreted as applying to a circular flat drop whose front remains
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FIG. 6: Profiles of the final dried-in nanoparticle layer for the dewetting of a suspension of nanoparticles

in a volatile solvent that partially wets the substrate for (a) high (Ω = 10−3), (b) medium (Ω = 2 × 10−6)

and (c) low (Ω = 0.78 × 10−8) evaporation rates, for the case when χ = H/l0 = 1.09, the lateral length

scale is ` =
√
γ/κH with κ = (Sp/l0) exp(d0/l0)H being an energy scale related to wettability and the

vertical length scale is H =
√

2SLW /κd0. The remaining dimensionless parameters are the evaporation

number Ω = Qeη0`
2/H3, the diffusion number Γ = D(0)η0/Hκ = 10−4 and the dimensionless chemical

potential M = Hµ/κ = −0.0035. The system size is L = 19500`. Film thickness and hp in the plots are

scaled by the precursor film thickness.

circular throughout the dewetting and evaporation process. In this case one should interprete the

coordinate x as the distance from the centre of the circular film.

We start with a film of height h0 of finite length sitting on a precursor film and assume that the film

contains nanoparticles at constant concentration φ0. The chosen parameter values ensure that the

film of thickness h0 is linearly stable. As we do not incorporate noise, no nucleation of additional

holes can occur (even with noise the probability would be extremely low). Without evaporation the

film dewets ‘classically’ by a retraction of the initially step-like front. After a short time, surface

tension smoothes the profile of the receding front and a capillary rim forms that collects all the
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dewetted liquid. The front recedes until all liquid is collected in a central drop. Since no liquid

evaporates [Qnc = 0 in Eq. (1)], the particle concentration does not change during the process.

The situation changes when allowing for evaporation (Qnc > 0). Now the front may retract

by convection and/or evaporation. Evaporation leads to the possibility of a strong increase in

the particle concentration at the contact line as evaporation is strongest there. Due to the strong

nonlinear dependence of the viscosity on the particle concentration, this may lead to a dramatic

decrease of the convective contribution to the front velocity. For moderate evaporation rates, this

may result in a (temporary) self-pinning of the front. Within the present basic model, the process

can (after complete dry-in) result in three different basic deposition patterns: (i) for very fast

evaporation rates, all other processes occur over time scales that are much larger. In particular, the

effects of convective redistribution of the liquid are neglectable. As a result one finds that a nearly

homogeneous film of nanoparticles of thickness hp = φ0h0 is deposited (see Fig. 6(a)). Convection

only results in the small heap of material visible at the left hand side of Fig. 6(a). The decrease

in hp on the right side of Fig. 6(a) arises due to the diffusion of particles to the right of the initial

front position; (ii) for very low evaporation rates, the film dynamics is dominated by convective

dewetting as this process acts on a much shorter time scale than evaporation. As a result, all the

liquid is collected into a drop before evaporation slowly removes the remaining solvent. Under

these conditions most of the nanoparticles are deposited in a single heap (see Fig. 6(c)). Depending

on the diffusivity, the heap might be highest at the centre or show a depression there; (iii) at

intermediate evaporation rates, one may observe the deposition of a nanoparticle ring around a

region with a nanoparticle film of much lower height. At the centre deposition might increase

again (see Fig. 6(b)).

The most intriguing feature is the ring formation that has been observed experimentally for sus-

pensions of very different particle sizes ranging from nanometers [32, 36, 46, 47] to hundreds of

micrometers. Pinning of the contact line and thermal Marangoni effects are often mentioned as

necessary conditions for the ring formation. The contact line pinning is often assumed to result

from substrate heterogeneities. Film height and concentration profiles at various instants during

the dewetting process are displayed in Fig. 7. The profiles are from before, at and after self-pinning

of the contact line. In Fig. 8 we display a space-time plot for the complete process. At first, the

front recedes in the same manner as when there is no evaporation, but now driven by convection

and evaporation. A small capillary rim forms that collects all the dewetted liquid that does not

evaporate. The particle concentration slowly increases at the contact line (Fig. 7(a) and regime
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FIG. 7: (Colour online) A sequence of profiles during a dewetting process with competing evaporation and

convection that leads to the dried-in ring structure of nanoparticles displayed in Fig. 6(b). Profiles are at (a)

before pinning (t = 0.08T ), (b) at self-pinning (t = 0.13T ), and (c) after depinning (t = 0.29T ), where

T = 3 × 1010τ with τ = η0γH/κ
2 (T is of order of 1s). The film thickness profiles h are the bold solid

lines, the nanoparticle concentrations φ are the dotted lines and the nanoparticle layer height hp = hφ are

the dashed lines. The remaining parameters and scalings are as in Fig. 6(b).

(i) in Fig. 8). The concentration increases further and when it approaches random close packing

φc, the viscosity diverges and the front pins itself. When pinned, further retraction only occurs

through evaporation (Fig. 7(b) and regime (ii) in Fig. 8). The front eventually depins and starts

to move again, leaving a nanoparticle ring behind (Fig. 7(c) and regime (iii) in Fig. 8). However,

the velocity is not as large as at the beginning, owing to the fact that the mean concentration of

particles has increased. The remaining particles are transported to the centre and are deposited

there when the remaining solvent evaporates (regime (iv) in Fig. 8).

The simple model used here shows, (i) that the contact line stops due to self-pinning by the de-

posited particles and (ii) the Marangoni effect is not necessary for the ring formation. The model

can easily be refined to account for solutal and/or thermal Marangoni effects [88] but self-pinning

22



(iii)

(iv)

(ii)
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FIG. 8: (Colour online) Space-time plots are given for (left) the film thickness h and (right) the nanoparticle

layer height hp = hφ. The plot corresponds to the complete evolution resulting in the ring profile of

Fig. 6(b). In both panels bright [dark] parts denote high [low] regions. The prominent central dark-bright

border in the left panel indicates the change of the position of the contact line in time. Over time, four

regimes can be distinguished: (i) fast motion before pinning, (ii) nearly no front motion during self-pinning,

(iii) slow motion after depinning, and (iv) final evaporation from the center.

should also be investigated further in the simple case presented here.

IV. CONCLUSION

We have discussed recent work on pattern formation processes in films and drops of evaporating

suspensions/solutions of polymers and particles. After reviewing experiments on suspensions of

thiol-coated gold nanoparticles in toluene we have focused on the modelling of the transport and

phase change processes involved. A theoretical approach to the modelling of the hydrodynamics

on the mesoscale has been described as well as more microscopic models for the dynamics in the

observed nanoscopic ‘postcursor’ film. In particular, we have introduced (i) a microscopic kinetic

Monte Carlo model, (ii) a dynamical density functional theory and (iii) a hydrodynamic thin film

model.

The kinetic Monte Carlo model and the dynamical density functional theory can both be used to

investigate and understand the formation of polygonal networks, spinodal and branched structures

resulting from the dewetting of an ultrathin ‘postcursor’ film that remains behind the mesoscopic

dewetting front. They are, however, not capable of describing the dynamical processes in a meso-
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scopic film. We have seen that the KMC model is able to describe the interplay of solute diffusion

within the solvent and solvent evaporation/condensation. It also takes the liquid-liquid, liquid-

particle and particle-particle interactions into account and therefore allows us to distinguish differ-

ent regimes of the transverse (fingering) instability of the evaporative dewetting front: a transport

regime where the instability is almost completely independent of the interaction strengths and

a demixing regime where particles and liquid demix at the receding front thereby increasing its

transverse instability.

The dynamical density functional theory describes the coupled dynamics of the density fields of

the liquid and the nanoparticles. In the form described above (i.e. based on the two-dimensional

hamiltonian (3)) we obtain a simple theory that allows us to study the time evolution of the evapo-

rating ultrathin film and also to investigate the influence of processes such as surface diffusion by

the liquid, which are not incorporated in the KMC model. However, it is straightforward to extend

the theory to consider a fully three-dimensional fluid film, in which one can distinguish between

short- and long-range interactions of solvent and/or solute with the substrate. We have, however,

restricted the examples given here to situations that can also be described using the KMC model.

A further exploration will be presented elsewhere.

Finally, we have discussed a simple thin film model for the hydrodynamics on the mesoscale. It

results from a long-wave approximation and consists of coupled evolution equations for the film

thickness profile and the mean particle concentration. It has been used to discuss the self-pinning

of receding contact lines that is related to the formation of rings of dried-in particles (coffee-

stain effect) that frequently occurs when films or drops of solutions or suspensions dewet by the

combined effects of convection and evaporation.

One of the primary goals of researchers in this field, is the search for simple-to-use techniques

that allow one to produce hierarchically structured functional layers for a wide range of applica-

tions such as, e.g., organic solar cells [98]. This means that the experiments advance very rapidly

towards increasingly complex systems. For example, there have been investigations of the influ-

ence of the phase behaviour on the drying of droplets of a suspension of hard-sphere colloidal

particles and non-adsorbing polymer [99], of the instabilities and the formation of drops in evap-

orating thin films of binary solutions [100] that may lead to treelike patterns [101], of effects of

a secondary phase separation on evaporation-induced pattern formation in polymer films [102],

and of the influence of an imposed flow on decomposition and deposition processes in a sliding

ridge of evaporating solution of a binary polymer mixture [103] and of the influence of rather

24



fast evaporation [104, 105]. These complex experimental systems all represent systems of high

practical interest that the theories presented here are not (yet) able to describe. Such experiments

do, however, provide a strong motivation for further work to extend the theories presented here, as

well as to develop new approaches.

Let us finally mention that several topics were entirely excluded from our discussion here. First, we

focused on a limited range of descriptions and did, for instance, not mention lattice Boltzmann,

molecular dynamics or dissipative particle dynamics approaches that may also be employed to

describe fluid suspensions [106–109]. Second, we have only discussed spatially homogeneous

substrates. Patterned substrates are widely used in dewetting experiments [38, 110–112]. Theoret-

ical descriptions are well developed for the dewetting of films of pure non-volatile liquids on such

substrates [68, 113–119]. However, in the case of volatile liquids on heterogeneous substrates,

much less work has been done. A third topic that we did not touch upon are possible continuum

thin film approaches to demixing dewetting suspensions. We believe it is feasible to extend the

diffuse interface theories such as model-H [120] to include the influence of evaporation in dewet-

ting nanoparticle suspensions. For instance, such models have already been adapted to describe

demixing free surface films of polymer blends [121–123].
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