20 research outputs found

    Greater intermanual transfer in the elderly suggests age-related bilateral motor cortex activation is compensatory

    Get PDF
    ABSTRACT. Hemispheric lateralization of movement control diminishes with age; whether this is compensatory or maladaptive is debated. The authors hypothesized that if compensatory, bilateral activation would lead to greater intermanual transfer in older subjects learning tasks that activate the cortex unilaterally in young adults. They studied 10 young and 14 older subjects, learning a unimanual visuomotor task comprising a feedforward phase, where there is unilateral cortical activation in young adults, and a feedback phase, which activates the cortex bilaterally in both age groups. Increased intermanual transfer was demonstrated in older subjects during feedforward learning, with no difference between groups during feedback learning. This finding is consistent with bilateral cortical activation being compensatory to maintain performance despite declining computational efficiency in neural networks

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs.

    No full text
    Diffusion Weighted Magnetic Resonance Imaging (DWMRI) and tractography approaches are the only tools that can be utilized to estimate structural connections between different brain areas, non-invasively and in-vivo. A first step that is commonly utilized in these techniques includes the estimation of the underlying fibre orientations and their uncertainty in each voxel of the image. A popular method to achieve that is implemented in the FSL software, provided by the FMRIB Centre at University of Oxford, and is based on a Bayesian inference framework. Despite its popularity, the approach has high computational demands, taking normally more than 24 hours for analyzing a single subject. In this paper, we present a GPU-optimized version of the FSL tool that estimates fibre orientations. We report up to 85x of speed-up factor between the GPU and its sequential counterpart CPU-based version. © 2012 IEEE

    That does not sound right: Sounds affect visual ERPs during a piano sight-reading task

    No full text
    Prolonged musical training induces important audio-visuo-motor plastic processes. However, little is known about how the musicians’ brain resolves multimodal conflicts while preparing for musical action. We run an electroencephalographic (EEG) investigation on how visual processing for action (score reading) is affected by preceding task-irrelevant piano sounds, usually associated to the same or to a different action. Presentation of an incongruent sound, 100 msec before a musical score with one single note, reduces Event-Related Potentials (ERPs) associated to score reading (N170) localised in the right temporo-parietal junction, as well as ERPs associated to conflict strength (N2) localised in the anterior cingulate cortex, superior and inferior right frontal cortex. These results suggest that listening to task-irrelevant auditory action effects (musical notes) interferes with both higher-order visual and frontal conflict monitoring processes. We conclude that, in the musicians’ brain, the automatic translation of musical sounds into motor plans, spread its effects to visually specific processing as well as strategic and amodal action monitoring mechanisms

    Brain functional connectivity changes in children that differ in impulsivity temperamental trait

    Get PDF
    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior

    Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs.

    No full text
    Diffusion Weighted Magnetic Resonance Imaging (DWMRI) and tractography approaches are the only tools that can be utilized to estimate structural connections between different brain areas, non-invasively and in-vivo. A first step that is commonly utilized in these techniques includes the estimation of the underlying fibre orientations and their uncertainty in each voxel of the image. A popular method to achieve that is implemented in the FSL software, provided by the FMRIB Centre at University of Oxford, and is based on a Bayesian inference framework. Despite its popularity, the approach has high computational demands, taking normally more than 24 hours for analyzing a single subject. In this paper, we present a GPU-optimized version of the FSL tool that estimates fibre orientations. We report up to 85x of speed-up factor between the GPU and its sequential counterpart CPU-based version. © 2012 IEEE

    Mapping early changes of cortical motor output after subcortical stroke: a transcranial magnetic stimulation study

    No full text
    After acute stroke several changes in cortical excitability occur involving affected (AH) and unaffected hemisphere (UH) but whether they contribute to motor recovery is still controversial. We performed transcranial magnetic stimulation mapping of several upper limb muscles over the two hemispheres in thirteen patients at 4-12 days from subcortical stroke and after 1 month. The occurrence of mirror movements (MMs) on the healthy side during contraction of paretic muscles was measured. At baseline, cortical excitability parameters over the AH decreased in comparison with controls, while excitability over the UH increased correlating with severity of motor deficits of the affected arm at baseline as well as with poor recovery. At follow-up, map parameters of the UH became closer to those of controls independently from recovery, while for the AH the number of responsive sites increased significantly. Ipsilateral motor evoked responses (iMEPs) in the affected arm were never elicited. We observed an early impairment in dexterity of the ipsilesional hand that recovered over-time but persistently differed in comparison with controls. MMs occurrence increased at baseline correlating with reduced cortical excitability of the AH as well as with increased map density over the UH. The acute increased excitability of the UH after stroke has a negative prognostic value on recovery and negatively affects motor performance of the ipsilesional hand. Moreover, the absence of iMEPs and the normalization of motor cortical excitability at follow-up indicate that the UH primary motor area does not contribute to recovery.6(3):322-9. doi: 10.1016/j.brs.2012.06.00

    Compensatory movement-related recruitment in amyotrophic lateral sclerosis patients with dominant upper motor neuron signs: an EEG source analysis study

    No full text
    Cortical reorganization to simple movement in patients with amyotrophic lateral sclerosis (ALS) has been investigated in neuroimaging studies, reporting recruitment of ipsilateral primary sensorimotor (iSMC) and premotor regions (PMd). In order to investigate the spatiotemporal pattern of such overactivation, EEG source analysis to brisk self-paced finger movements was performed in thirty-two ALS patients, able to initiate their movement as fast as controls and clustered according to their most affected motor neuron (upper or lower). Reduced activity within cortical sources in bilateral SMC and caudal mesial areas was found only in patients subgroup with extensive upper motor neuron (UMN) clinical signs and mild motor weakness (U>L). Its absence in patients with opposite clinical features (L>U) suggest that this reduction might represent a possible marker of UMN impairment, and that the lower motor neuron (LMN) degeneration in L>U patients did not exert a retrograde effect over their cortical motor neurons. An ipsilateral premotor recruitment was observed in U>L patients only and since its extent positively correlated with movement initiation speed and right hand Medical Research Council (MRC) score, it might represent a compensatory recruitment. The latter correlation might suggest that the slight motor weakness in those patients may at least partly depend from a UMN dysfunction that can be compensated by cortical recruitment.1425:37-46. doi: 10.1016/j.brainres.2011.09.00
    corecore